
Using Scheduling entropy amplification
in CUDA/OpenMP code to exhibit non-

reproducibility issues.
David DEFOUR, Université de Perpignan, FRANCE

Acknowledgment:
Funding: This work was supported by the ANR-20-

CE46-0009 InterFLOP project

Motivations

• Usage of parallel primitive is increasing

• Locks, Atomics, Barrier:
• Solve memory consistency issues

• Does not address numerical issues such as reproducibility

• Can leads to validation, debugging issues or deadlock

• Example: Floating-Point Histogram

__global__ void GlobalSum(float *i_val, int *i_adr, float *res, int N){
int gid = blockDim.x*blockIdx.x+threadIdx.x;

for(uint i=0; i<N; i+=GridDim.x*blockDim.x)
atomicAdd(&res[i_adr[i+gid]], i_val[i+gid]);

} N=216 values with C=108,
1000 runs of 1 block/1024 threads

=> 1000 different results

Motivations

• Goal:
• “Offer developers solutions to measure the numerical impact of scheduling

even those which are not possible at a given time”.

• Ability to estimate sensitivity of a code to such phenomena especially when
considering legacy property of a code (aptitude to delivers numerically
satisfying results on future hypothetical architecture and/or
language/compiler

Outline

• Numerical non reproducibility in parallel execution environment

• Execution model

• Proposed solution
• Accumulator identification

• Interposer

• Scheduling amplification

• Results

Outline

• Numerical non reproducibility in parallel execution environment

• Execution model

• Proposed solution
• Accumulator identification

• Interposer

• Scheduling amplification

• Results

Numerical non reproducibility in parallel
execution environment
• IEEE754 issues

• Rounding error 1 + 2100 = 2100

• Non associativity of operations 1 + 2100 − 2100 ≠ 1 + (2100 − 2100)
• Issues exacerbate in parallel environments

• Workarounds
• Reduce numerical error

• use of large accumulator for the summation problem,
• compensated algorithm, …

• Use deterministic execution order either at software/execution level
• Enforce an order using loop iteration => does not solve all issues (ex: reduction clause in

OpenMP)
• Set an execution order at the execution stage => challenging when no assumption can be

made on the execution order (ex: CUDA/OpenCL)

Outline

• Numerical non reproducibility in parallel execution environment

• Execution model

• Proposed solution
• Accumulator identification

• Interposer

• Scheduling amplification

• Results

Hardware Execution Model

• Where parallelism is encountered at hardware level

• Level 0: Sub-Word parallelism
• Register width fixed at architecture level with computational unit supporting multiple operand precision (ex: FP16, FP32)

• Level 1: SWAR (SIMD Within A Register)
• Pack several data within a single register (ex: ARM SVE range from 128 to 2048 bits)
• Cross lane instruction with swizzling ability

• Level 2: Warp
• Instruction stream are scheduled simultaneously across processing unit of 1+ SIMD blocks to form a subgroup called

wave/warp (ex: 32 for Nvidia, 64 for AMD) Level 2: Warp

• Level 3: SIMT
• On some architectures (ex: GPU) parallelism is exploited using array processing (vs vector processing)
• Spacio-Temporal SIMT corresponds to the issuing of the same instruction multiple time but for different set of invocations

• Level 4: SMT
• Ability to schedule instructions from another wave in order to hide long-latency inst.

• Level 5: Core
• Processor embed several copy of the same hardware (SM in CUDA terminology)

Software Execution Model

• How parallelism is exposed and exploited at software level
• OpenMP/Threads:

• Parallelization based on threads (parallel regions), tasks(implicit/explicit), work sharing
(parallel construct), accelerator offloading, SIMD lanes

• Synchronization : barriers, reductions, task dependencies, task wait, lock, critical sections

• Number of threads, usage of middleware, usage of FP specific reduction clause

• State of the art: tools to help detecting data race (dynamic detection, hybrid, static
analysis…)

• CUDA/OpenCL
• Work distribution limited to thread and block identifier scheduling

• At software level, grid of block of thread

• Limited support of synchronization primitive

Outline

• Numerical non reproducibility in parallel execution environment

• Execution model

• Proposed solution
• Accumulator identification

• Interposer

• Scheduling amplification

• Results

Proposed architecture

Impact of the entropy amplifier

• Generation of random permutation
• Requires efficient parallel random generation number

• Based on Fischer-Yates shuffler (Sattolo’s variant => unbiaised permutation)

• Measure of the entropy
• Plot scheduling as a FP number ∈ [0,1]

• Use arithmetic encoding of the sequence of index identifier according
to their execution order

Outline

• Numerical non reproducibility in parallel execution environment

• Execution model

• Proposed solution
• Accumulator identification

• Interposer

• Scheduling amplification

• Results

Results: scheduling comparison

Measure of the entropy for block scheduling with the hardware scheduler solely for 8 (first column) and 320 (second

column) launched block over 100 executions

Results: scheduling comparison

Measure of the entropy for block scheduling with the entropy amplifier, for 8 (first column) and 320 (second column)

launched block over 100 executions

Evaluation on benchmark

• Selected benchmark from SHOC, PARBOIL
• Spot at least one accumulator & use the

interposer to interface the Block/Thread/Loop
Index with the amplifier

• Hardware platform
• Intel Xeon E5645, 6 cores,
• Nvidia RTX2060, 30 SM

• 4 execution configurations
1. Use the same execution configuration for each

run
2. Change the execution configuration (number of

threads, block, ...) between each run
3. Change work scheduling between each run
4. Change loop indexing between each run

Results

Observed numerical variability over 100 runs for various CUDA/OpenMP programs
according to 4 different execution configurations.

4 execution configurations
1. Use the same execution

configuration for each run
2. Change the execution

configuration (number of threads,
block, ...) between each run

3. Change work scheduling between
each run

4. Change loop indexing between
each run

Conclusion

• POC demonstrating that Amplifying numerical variability
• Depend on the coding style and is not an easy task

• Useful to anticipate potential issues of a given code on future system

• Future work
• Limited to accumulation what about other errors ?

• What about MPI, Matrix Ops, Simdization

