

VERRU: Arrondis stochastiques déterministes

20-21/10/22 Réunion mi-ANR InterFLOP

Bruno Lathuilière (EDF R&D)

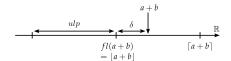
Travail en commun avec : Nestor Demeure.

Plan

- 1. Les arrondis stochastiques et leurs limitations.
- 2. Les arrondis stochastiques déterministes
- 3. Recherche d'implémentations efficaces
- 4. Les arrondis stochastiques commutatifs déterministes
- 5. Perspectives

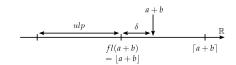
Transformation sans erreur:

- ightharpoonup $a \circ b = \sigma + \delta$.



Transformation sans erreur:

$$\triangleright$$
 $a \circ b = \sigma + \delta$.



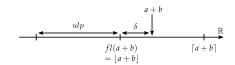
♦ Si
$$\delta < 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b) - ulp$,
 $\lceil a \circ b \rceil = fl(a \circ b)$.

Si
$$\delta = 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b)$
 $\lceil a \circ b \rceil = fl(a \circ b)$.

• Si
$$\delta > 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b),$
 $\lceil a \circ b \rceil = fl(a \circ b) + ulp.$

Transformation sans erreur:

$$\triangleright$$
 $a \circ b = \sigma + \delta$.



▶ Si
$$\delta < 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b) - ulp$,
 $\lceil a \circ b \rceil = fl(a \circ b)$.

Si
$$\delta = 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b)$
 $\lceil a \circ b \rceil = fl(a \circ b)$.

• Si
$$\delta > 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b),$
 $\lceil a \circ b \rceil = fl(a \circ b) + ulp.$

Transformation sans erreur:

$$\triangleright$$
 $a \circ b = \sigma + \delta$.

$$\begin{array}{c|c}
 & a+b \\
\hline
 & \delta \\
\hline
 & fl(a+b) \\
 & = |a+b|
\end{array}$$

► Si
$$\delta < 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b) - ulp$
 $\lceil a \circ b \rceil = fl(a \circ b)$.

Si
$$\delta = 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b)$
 $\lceil a \circ b \rceil = fl(a \circ b)$.

Si
$$\delta < 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b) - ulp$, Si $\delta = 0$:
 $\lfloor a \circ b \rfloor = fl(a \circ b)$ Si $\delta > 0$:
 $\lfloor a \circ b \rfloor = fl(a \circ b)$, $\lfloor a \circ b \rfloor = fl(a \circ b) + ulp$.

Mode random:
$$fl_{random}(a \circ b) = \begin{vmatrix} \lfloor a \circ b \rfloor & avec \ p = 1/2 \\ \lceil a \circ b \rceil & avec \ p = 1/2 \end{vmatrix}$$

Générateur pseudo aléatoire dans $\{0,1\}$: (tinyMT ou xoshiro256plus)+ bit shift.

Transformation sans erreur:

$$a \circ b = \sigma + \delta,$$

$$\sigma = fl(a \circ b)$$

► Si
$$\delta < 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b) - ulp$,
 $\lceil a \circ b \rceil = fl(a \circ b)$.

Si
$$\delta = 0$$
:
 $\lfloor a \circ b \rfloor = fl(a \circ b)$

Mode average:

$$fl_{average}(a \circ b) = egin{bmatrix} \lfloor a \circ b \rfloor & avec \ p = rac{1 - \delta}{|ulp|} \\ \lceil a \circ b \rceil & avec \ p = rac{\delta}{|ulp|} \end{bmatrix}$$

Générateur pseudo aléatoire dans $\mathbb{F} \cap [0,1]$: tinyMT ou xoroshiro128plus. Equivalence avec MCA RR à la précision machine souvent appelé SR nearness.

Problème avec les arrondis stochastiques

```
double a1=foo(42.); 1 float x = foo(42);
   double a2=foo(42.); 2 if(x>0) return sqrt(foo(42));
                   3 else return sqrt(-foo(42));
  assert(a1==a2);
Echec du assert
                          NaN
  1 class ProjectedCentralCircularSortOrder{
  2 ... constructor...
  3 bool operator()(const double* pt1, const double* pt2){
      const double ang1=atan2(pt1[_aIdx]-_a,pt1[_bIdx]-_b);
      const double ang2=atan2(pt2[_aIdx]-_a,pt2[_bIdx]-_b);
  6 return ang1 > ang2;}
  7 }
     ProjectedCentralCircularSortOrder order(...);
     sort((polygon.begin()), polygon.end(), order);
 Erreur de segmentation
```

Remarque: problème similaire pour MCA mentionné par Stott Parker (paragraphe 6.8.2 "Handling multiple references properly" dans http://fmdb.cs.ucla.edu/Treports/970002.pdf)

Contournement et limitations

- 1 Ne pas pertuber ces fonctions :
 - Les erreurs commises dans ces fonctions sont ignorées.
- 2 Réécrire le code en stockant les calculs multiples.
 - ► Il n'est pas toujours facile/possible de modifier le code
 - Le nouveau code peut être moins performant.
- Outiliser des clients request VERROU_[START|STOP]_DETERMINISTIC
 - Possible à l'échelle d'une fonction.
 - Peu utilisé dans la pratique.

Dans tous les cas on doit connaître les fonctions concernées : cela nécessite l'usage de delta-debug puis de faire le tri entre les faux positifs et les vraies erreurs.

random_det et average_det

Idée : assurer le déterminisme interne à une exécution Verrou au niveau des opérations flottantes.

Moyen : remplacer le générateur pseudo aléatoire par une fonction de hashage qui prend en paramètre :

- verrou_seed : une graine de 64bit.
- arg1, [arg2, [arg3]] : les opérandes de l'opération.
- Op : le type de l'opération (enum désignant +,-,*,/, fma, cos, sin ...).

Pour random_det (respectivement average_det) l'espace d'arrivée de la fonction de hashage est $\{0,1\}$ (respectivement $\mathbb{F}\cap[0,1]$)

Souhait : conserver les mêmes propriétées que random (respectivement average), dans les cas où les opérandes ne répétent pas .

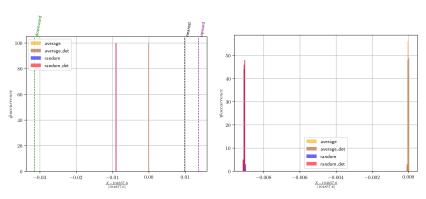
Avantage collatéral : le debug avec une seed fixée est facilité, avec la possibilité d'ajouter des opérations ne perturbant pas les variables d'intérêt (Exemple affichage de debug).

Implémentation naïve : mersenne twister

```
1 uint64_t mersenne_twister(uint64_t arg1,uint64_t arg2,
                             uint32_t Op){
   const uint64_t keys[4] = {verrou_seed, arg1, arg2, Op};
   tinymt64_t gen;
4
   tinymt64_init_by_array(&gen, keys, 4);
   return tinymt64_generate_uint64(&gen);
7 }
hash function for random det:
1 return mersenne_twister(arg1, arg2, Op) >> 63;
hash function for average_det:
1 const uint32_t v=mersenne_twister(arg1,arg2,0p)>>32;
2 constexpr double invMax= (1./4294967296.);
3 return ((double)v * invMax );
```

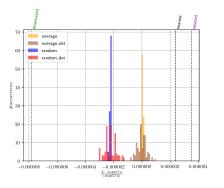
Evaluation Seq

- ▶ Seq : sommation séquentielle de 2²⁰ termes valant 0.1.
 - ► Comme l'accumulateur est différent à chaque étape: on espère que random et random_det soient similaires.



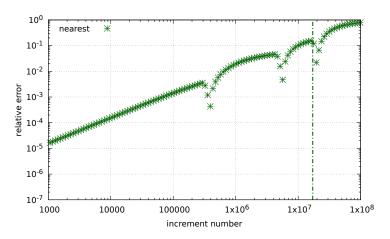
Evaluation Rec

- ▶ Rec : sommation récurssive de 2²⁰ termes valant 0.1.
 - Récursion de base 4 : chaque tache est divisée en 4 sous-tâche.
 - ▶ Une tache de taille inférieure à 1024 éléments est calculée séquentiellement.
 - ► En base 2, sans seuil séquentiel, il n'y aurait pas d'erreur.



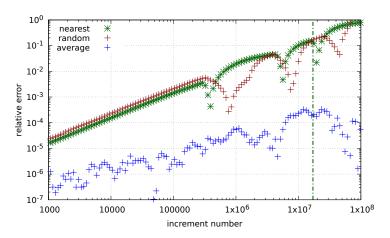
élargissement du support de la distribution observée.

Effet sur la stagnation



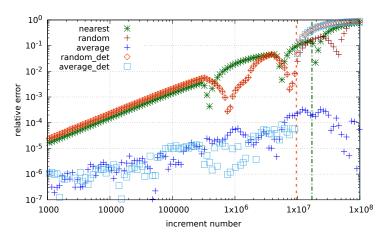
Error of accumulator (initialized to 100000) after i addition of 0.1. The vertical bars represent the beginning of stagnation.

Effet sur la stagnation



Error of accumulator (initialized to 100000) after i addition of 0.1. The vertical bars represent the beginning of stagnation.

Effet sur la stagnation



Error of accumulator (initialized to 100000) after i addition of 0.1. The vertical bars represent the beginning of stagnation.

Recherche d'implémentations efficaces

	Testé	Gardé	Références
dietzfelbinger	Oui	Oui	[1 p.6]
multiply_shift	Oui	Oui	[1 Pair-Multiply-Shift p.15]
tabulation	Oui	Non	[2 p.9]
twisted_tabulation	Oui	Non	[2 p.9]
double_tabulation	Oui	Oui(par défaut)	[2]
MurmurHash3	Non	Non	Coûteux d'après [3]
tinyMT	Oui	Oui	

^[1] M.Thorup. High Speed Hashing for Integers and Strings.

^[2] M.Thorup. Fast and Powerful Hashing using Tabulation.

^[3] S Dahlgaard, M.B.T Knudsen et M. Thorup. Practical Hash Function for Similarity Estimation and Dimensionality.

Verrou hash: dietzfelbinger implementation

```
1 uint64_t dietzfelbingerHash(uint64_t arg1, uint64_t arg2,
                               uint32 t Op){
   const uint64_t argsHash = arg1 ^ arg2;
    const uint64_t seed = verrou_seed ^ (Op<<2);</pre>
   const uint64_t oddSeed = seed | 1;
6 return (oddSeed * argsHash);}
hash function for random det:
1 return dietzfelbingerHash(arg1,arg2,Op) >> 63;
hash function for average_det:
1 const uint32_t res32(dietzfelbingerHash(arg1,arg2,Op)>>32);
2 constexpr double invMax=(1/ 4294967296.);
3 return ((double)res32 * invMax );
```

Verrou hash: multiplyShift

```
1 uint64_t multiplyShift(uint64_t arg1, uint64_t arg2,
                          uint32 t Op){
   uint32_t a1_1=arg1; uint32_t a1_2=arg1>>32;
3
   uint32 t a2 1=arg2; uint32 t a2 2=arg2>>32;
4
5
   return (a1 1+seedTab[0]) * (a1 2+seedTab[1])
6
         + (a2_1+seedTab[2]) * (a2_2+seedTab[3])
         + (Op*seedTab[6]) + seedTab[7];}
8
hash function for random det:
1 return multiplyShift(arg1,arg2, Op) >> 63;
hash function for average det:
1 const uint32_t v=multiplyShift(arg1,arg2,0p)>>32;
2 constexpr double invMax= (1./4294967296.);
3 return ((double)v * invMax );
```

remarque : uint64_t seedTab[7] est généré par tinyMt initialisé avec verrou_seed.

Verrou hash : double_tabulation

```
1 void hash_aux(uint32_t& h,uint32_t index,uint64_t value){
   uint64_t x(value);
2
3 for(int i=0; i <8; i++){</pre>
4 uint8_t c=x;
5 h^= hashTable[index][i][c];
x = x >> 8;
7 }}
8 uint32_t hash_op(uint16_t Op){
     uint32_t h=0;
9
uint8_t c=Op; h^= hashTableOp[0][c];
11 c = 0p \gg 8; h^= hashTableOp[1][c];
12 return h:}
13 uint32_t double_tabulation(uint64_t arg1,uint64_t arg2,
                            uint32 t Op){
14
    uint32 hash1=hash_op(res,Op);
15
    hash_aux(hash1, 0, arg1); hash_aux(hash1, 1, arg2);
16
uint32 res=hash_aux(res, 3, hash1);
18 return res:}
```

 $\label{lem:lem:uint32_thashTableQp[2][256] sont initialisés partinyMt avec verrou_seed.}$

Résultats : estimateurs sur 100 échantillons

	Seq		Rec	
	float	double	float	double
error(nearest)	6.66	35.92	18.67	47.92
all	4.61	34.05	16.58	45.99
random	5.73	36.05	17.68	47.92
random_det(dietzfelbinger)	5.10	36.06	17.30	47.09
random_det(multiply_shift)	4.85	34.41	16.90	46.43
random_det(double_tabulation)	5.73	36.05	17.36	47.59
random_det(mersenne_twister)	5.73	36.06	17.39	47.32
average	6.67	35.91	18.63	47.92
average_det(dietzfelbinger)	6.10	35.92	17.95	46.90
average_det(multiply_shift)	4.99	34.24	17.02	46.32
<pre>average_det(double_tabulation)</pre>	6.67	35.91	18.19	47.32
average_det(mersenne_twister)	6.67	35.91	18.25	47.32

$$s_{random} = -log2\left(\frac{max_{i} \in random(|x_{i} - x_{nearest}|)}{|x_{nearest}|}\right) \quad error(nearest) = -log2\left(\frac{|x_{ref} - x_{nearest}|}{|x_{ref}|}\right)$$

 $s_{all} = max(s_{random}, s_{average}, s_{downward}, s_{upward})$

Résultats : performance

Programme: stencil en float/double compilé en O0/O3

type	double		float	
compilation option	00	O3	00	O3
nearest	×15.2	x35.3	×18.1	×49.0
random	×22.2	×61.0	×27.6	×98.4
random_det(dietzfelbinger)	×22.5	×61.4	×27.5	×96.6
random_det(multiply_shift)	x22.9	×62.8	×27.5	×96.4
random_det(double_tabulation)	×27.0	×79.0	x31.6	×118.8
random_det(mersenne_twister)	×42.0	×134.3	x54.9	×226.9
average	×25.0	×70.7	×31.1	×111.8
average_det(dietzfelbinger)	×24.2	×65.1	x29.8	×100.2
average_det(multiply_shift)	×24.6	×66.4	×30.1	×101.1
<pre>average_det(double_tabulation)</pre>	×29.6	x85.6	x35.3	×127.2
average_det(mersenne_twister)	×44.7	×140.2	×59.2	×235.1

Attention : à refaire passer avec la dernière version de verrou.

Arrondis stochastiques commutatifs déterministes

Problème:

```
1 assert (dot(x,y) == dot(y,x))
```

Solution : Introduction des modes [random, average] _comdet qui garantissent que x op y soient arrondis comme y op x.

Implémentation:

- Pour dietzfelbinger random_det a déjà cette propriété.
- Pour les autres on remplace hash(arg1,arg2,Op) par hash(min(arg1,arg2),max(arg1,arg2),Op).

Performance:

Pour l'instant très faible impact (dans le bruit de mesure).

Conclusions et perspectives

Conclusion

- [random, average]_det suppriment des faux-positifs sans besoin de modifier le code.
- [random, average] _det simplifient le deboguage avec une graine fixée.
- [random,average]_det ont un surcoût acceptable vis à vis de [random,average].

Perspectives

- Optimisation du backend verrou pour random/average (xo[ro]shiro, ...).
- Optimisation du frontend valgrind/verrou.
- Tester xo[ro]shiro pour [random, average]_det.
- Généralisation pour MCA (PB, RR, FULL).
- Test du remplacement du mode average[_det] en float par SR_nearness.
- Besoin de REX sur les résultats du delta-debug en mode [random, average] [det, comdet].

