

John Osorio Ríos*[†][§], Adrià Armejach^{*†}, Eric Petit[§], Greg Henry[§] and Marc Casas^{*†}

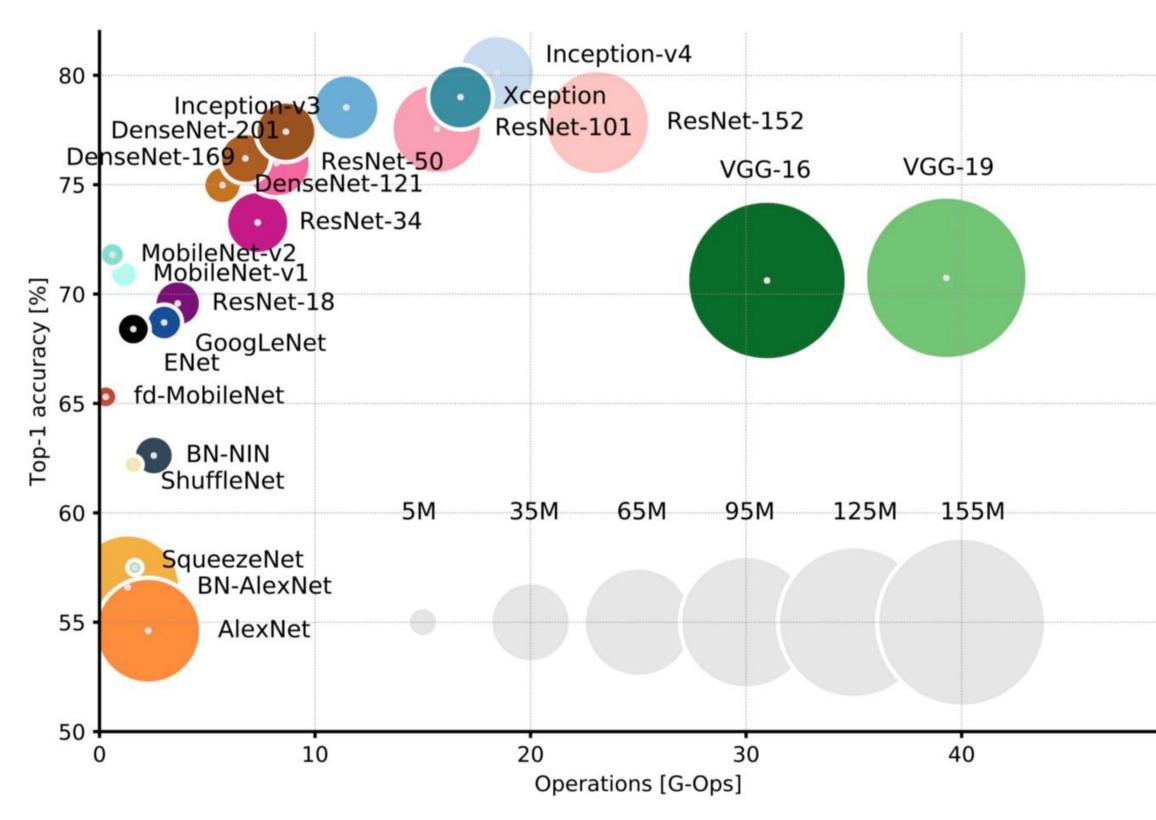
Barcelona Supercomputing Center Centro Nacional de Supercomputación

Evaluating Reduced Numerical Datatypes to Train Deep Neural Networks using PIN

* Barcelona Supercomputing Center (BSC) ⁺ Universitat Politècnica de Catalunya (UPC) § Intel

1

This work has been partially supported by Intel under the BSC-Intel collaboration.



A. Canziani, E. Culurciello, A. Paszke, « An Analysis of Deep Neural Networks Models for Practical Applications », in The 2017 IEEE International Symposium on Circuits & Systems, Baltimore, USA, May 2017.

DNNs Overview

- The use of Deep Neural Networks is becoming ubiquitous.
- Medicine, sports, chemistry, physics are fields where DNNs are widely used nowadays.
- Models and datasets continue to become deeper and larger. Increasing computational needs.

50

Motivation

- like execution time or power.
- approaches rely on reduced computer number formats.
- We propose:
 - A method to evaluate several reduced precision datatype approaches (FASE).

 - A set of compound datatypes relying on a specific datatype.

• Training Deep Neural Networks (DNNs) is a costly task in terms of computational resources

• There are approaches able to reduce training costs without reducing DNNs accuracy. These

• A technique to dynamically adapt the numerical precision during the training phase.

- Training (Link)
- A BF16 FMA is All You Need for DNN Training (Link)

Outline

• A Fast, Accurate and Seamless Emulator for Custom Numerical Formats (FASE) (Link) • Dynamically Adapting Floating-Point Precision to Accelerate Deep Neural Network

A Fast, Accurate and **Seamless Emulator for Custom Numerical** Formats (FASE)

> **Barcelona** Supercomputing Center Centro Nacional de Supercomputación

A Fast, Accurate and Seamless Emulator for Custom **Numerical Formats**

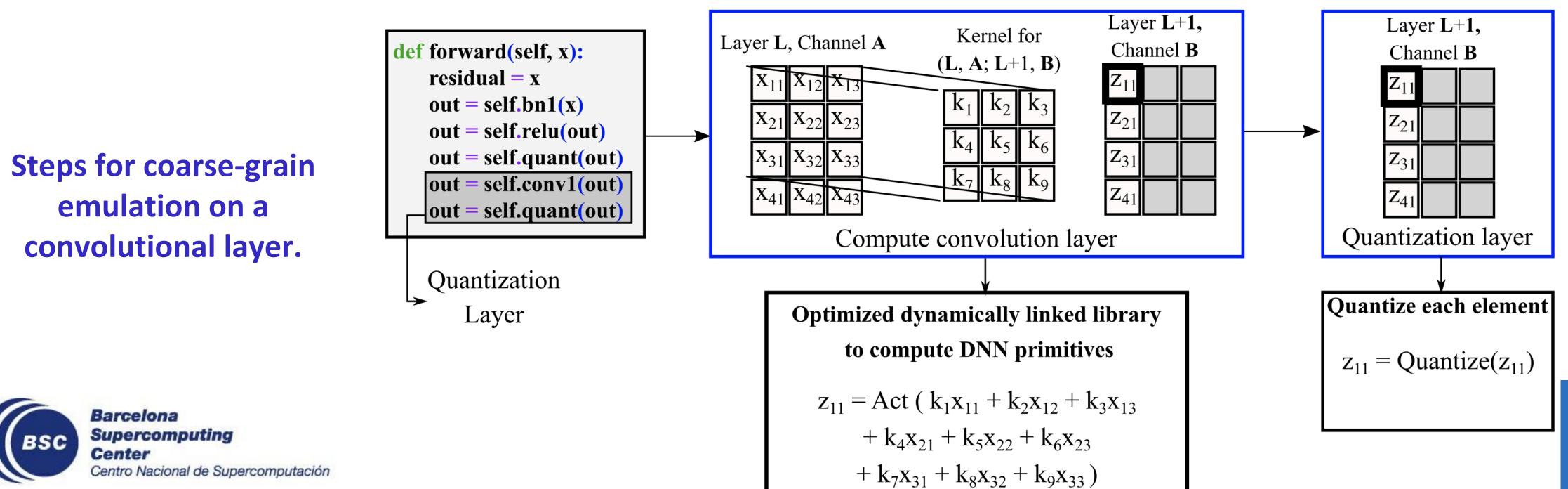
- implementations
- It is based on Intel PIN

Features	RPE [7] (QPyTorch [39	Verificarlo [4]	FASE	
Fast	X	\checkmark	\checkmark	\checkmark	
Accurate	\checkmark	×	\checkmark	\checkmark	
Seamless	×	×	×	$\boldsymbol{X}(\text{recompilation})$	
Dynamic Libraries	× ×	×	×	X(Lib. recompilation)	
Independent	×	×	\checkmark	$\mathbf{X}($ compiler dep. $)$	

• FASE is a tool that enables the emulation of custom numerical formats on any application. • It enables HW architects to understand numerical behavior before committing to costly HW

A Fast, Accurate and Seamless Emulator for Custom **Numerical Formats**

- Coarse-grain granularity (Function level) Ο
- Fine-grain granularity (Instruction level) Ο



• There are various state-of-the-art techniques to emulate reduced precision approaches.

• The simplicity is the most important feature of FASE Ο

It emulates code of external dynamically linked libraries Ο

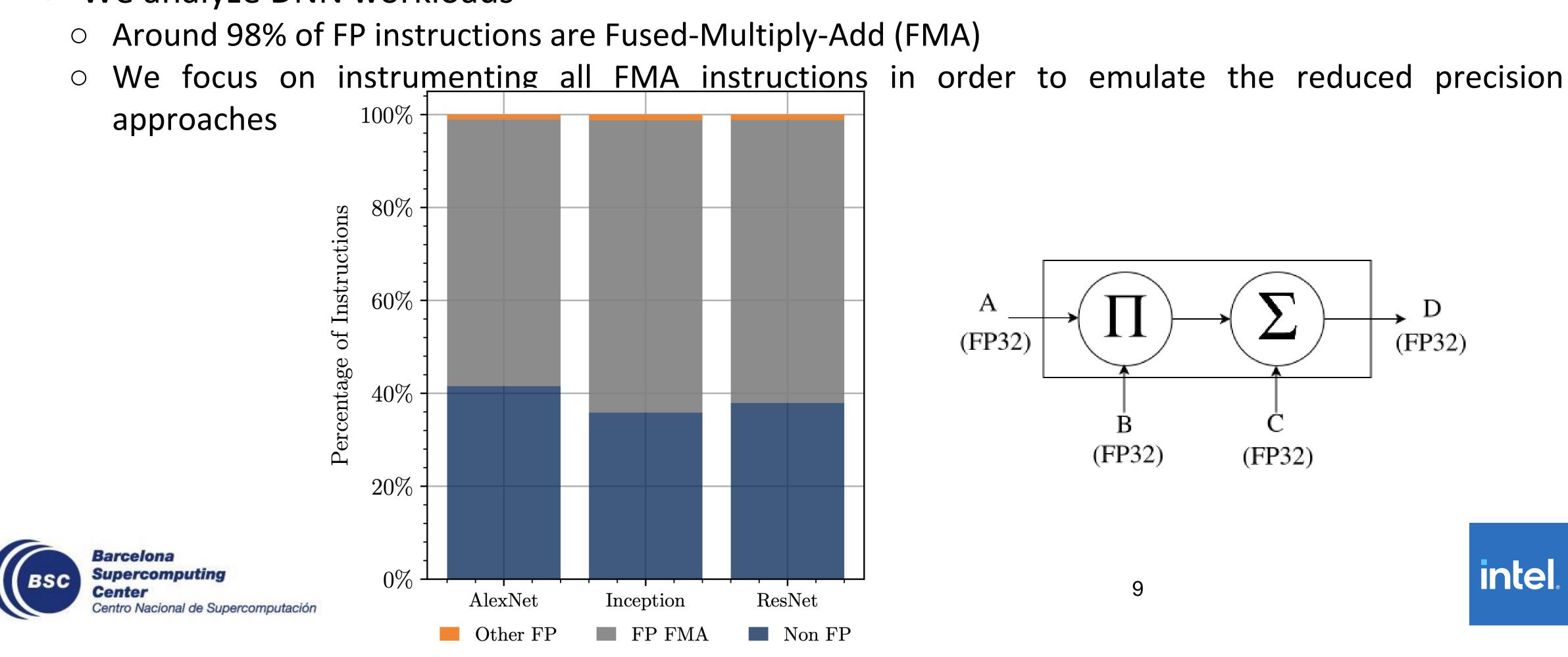
Design Principles

It enables Fast, Accurate and Seamless emulation of custom numerical formats

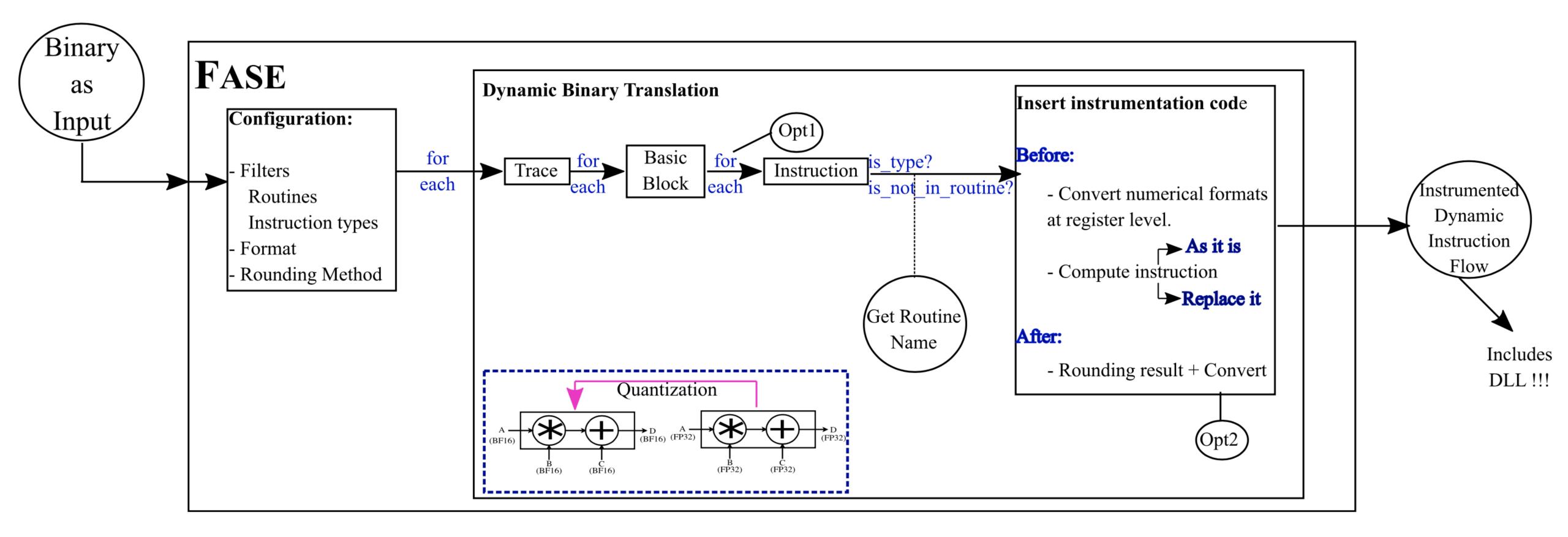
Workload Characterization

• We analyze DNN workloads

- 100%approaches

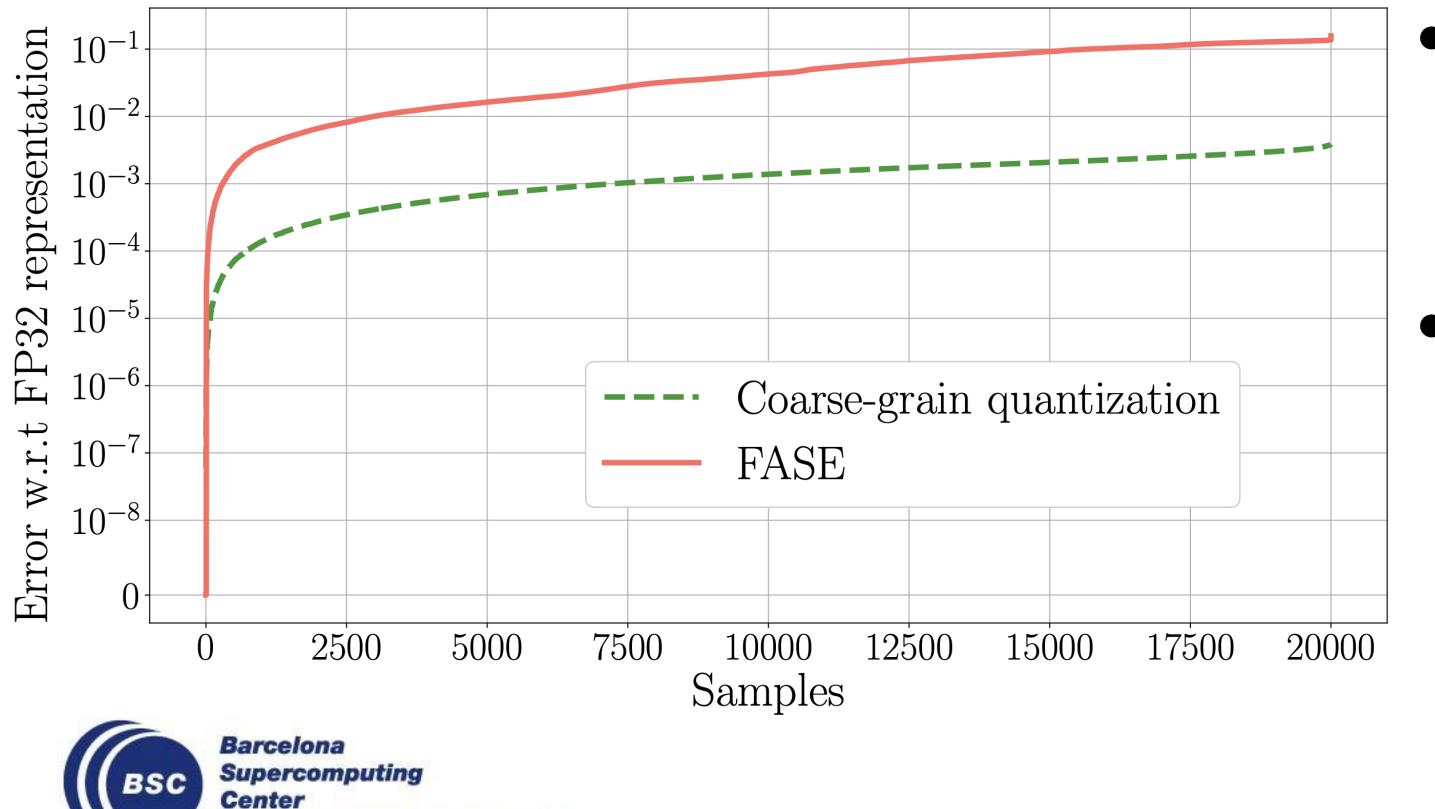


Implementation



Emulation Accuracy

- emulation on the Intel MKL SGEMM kernel.

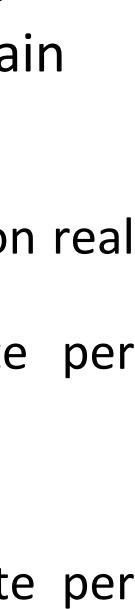


Centro Nacional de Supercomputación

• **Methodology:** We use SGEMM to multiply two matrices using the Intel Math Kernel Library. • **Results:** The figure compares the relative error when employing fine-grain and coarse-grain

• Using FASE (fine-grain):

- It is close to what would be observed on real HW
- Able to track errors that accumulate per Ο instruction
- Using coarse-grain:
 - Results more accurate that they should
 - Cannot capture errors that accumulate per instruction

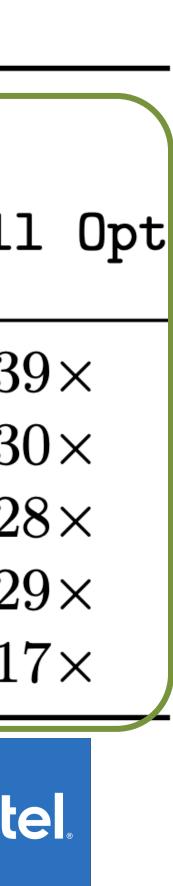


Emulation Overhead Measurement

fine-grain manner the input and output operands to BF16 with RNE rounding.

Workload	FASE	Latency					
(framework)	Instr.	Unopt	Opt1 Basic block	Opt2 Vectorization	Full		
SGEMM (MKL)	$15 \times$	$1809 \times$	$880 \times$	82 imes	39		
ResNet50 (Caffe)	$11 \times$	$1131 \times$	553 imes	76 imes	30		
3DGan (Tensorflow)	7 imes	$714 \times$	340 imes	66 imes	28		
LSTM (PyTorch)	$18 \times$	$1096 \times$	551 imes	70 imes	29		
Transformer (PyTorch)	$8 \times$	$818 \times$	$423 \times$	36 imes	17		

• **Results:** The table shows the emulation latencies introduced by FASE when converting in a



Large Scale Experiments

- datatypes.

N /T. 1.1			Accuracy		
Model	Dataset	FP32	BF16	MP	
ResNet18	CIFAR100	71.91%	71.46%	71.89%	
ResNet34	CIFAR100	73.21%	72.83%	73.86%	
${ m ResNet50}$	CIFAR100	74.78%	69.24%	74.25%	
${ m ResNet101}$	CIFAR100	75.93%	67.10%	75.65%	
MobileNetV2	CIFAR100	75.04%	73.92%	75.16%	
AlexNet	ImageNet	60.79%	57.80%	60.18%	
Inception	ImageNet	74.01%	72.03%	73.73%	
LSTMx2 (Perplexity)	$\widetilde{\text{PTB}}$	86.86	137.69	87.09	
Transformers (BLEU)	IWSLT16	34.53	34.86	34.66	

• Methodology: To show FASE supports real workloads we perform a set of large-scale experiments. These tests consider the use of several DNN models, datasets and numerical

• **Results:** The table shows the results of using FASE for several full DNN training workloads.

Conclusions

- and **seamless**.
- emulation.
- workloads.

• We propose FASE, an emulation tool for custom numerical formats. FASE is accurate, fast,

• Our evaluation demonstrates that FASE is more accurate than other state-of-the-art proposals that employ coarse-grain emulation, uncovering relative errors that appear only in fine-grain

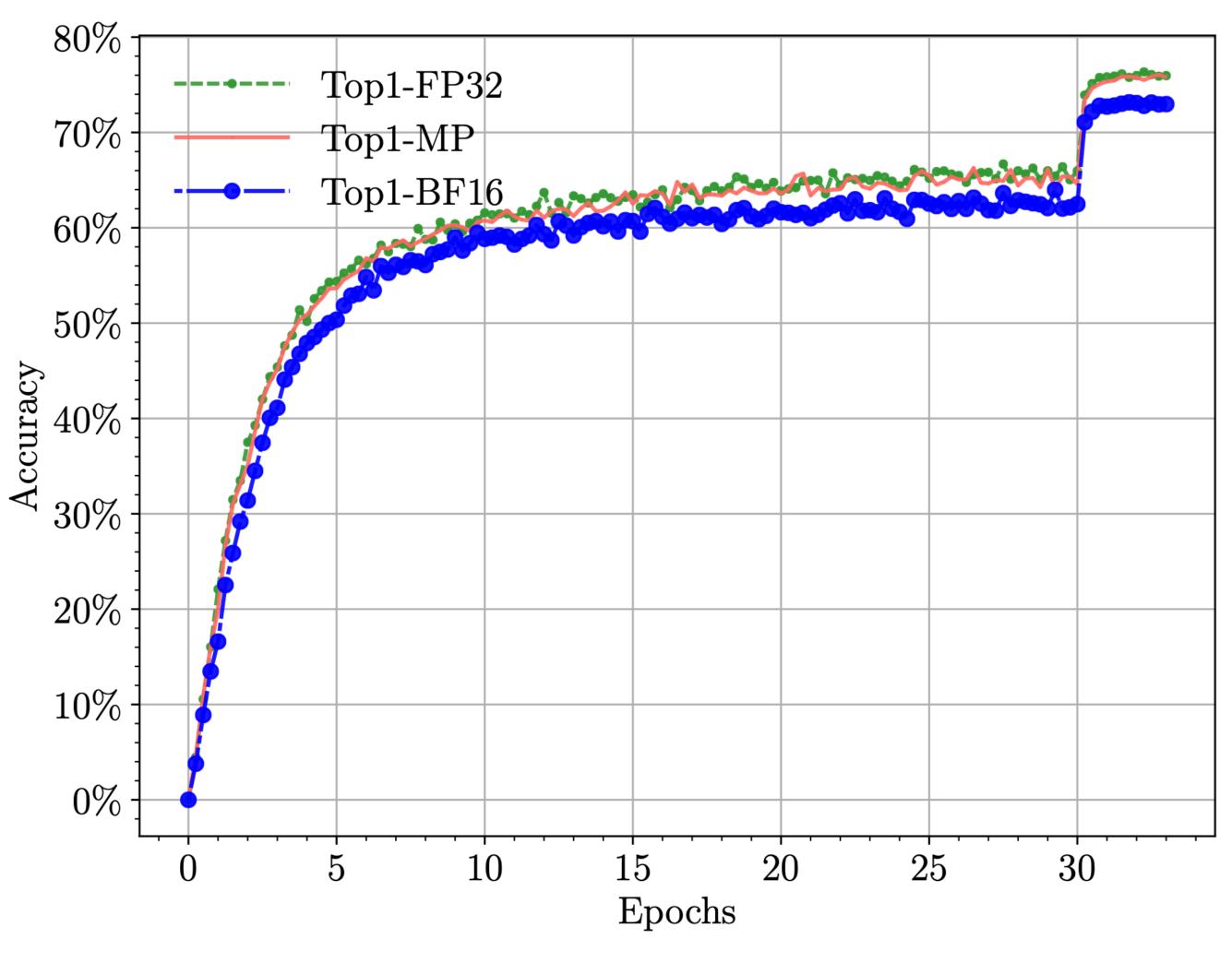
• We demonstrate that by applying both the basic block and vectorization optimizations, FASE latency overheads are manageable, ranging between 17× to 39× for a wide variety of

Dynamically Adapting Floating-Point Precision to Accelerate Deep Neural Network Training

Barcelona Supercomputing Center Centro Nacional de Supercomputación

State-of-the-Art FMAs for Training

Training	Inputs	5	Output	Multiply	Accum.	
8	A,B	С	D			
Tensor cores	FP16/BF16	FP32	FP32	FP16/BF16	FP32	
Google TPU v3	BF16	FP32	FP32	BF16	FP32	
AVX512-BF16	BF16	FP32	FP32	FP32	FP32	
Full BF16	BF16	BF16	BF16	BF16	BF16	



Static Techniques on ResNet-50

Analysis for Evaluated DNNs

Dynamic Precision Training

1:	$numBatchesMP \leftarrow 10$
2:	$numBatchesBF16 \leftarrow 1000$
3:	$emaThreshold \leftarrow 0.04$
4:	
5:	$precisionModeBF16 \leftarrow False$
6:	$countBatchesBF16 \leftarrow 0$ //
7:	$numBatchesTrain \leftarrow numBatches$
8:	
9:	for $i = 0$ to niter do
10:	train.step(numBatchesTrain)
11:	$trainingLoss[i] \leftarrow train.traininglistics[i]$
12:	if $i = 5$ then
13:	$EMA \leftarrow average(trainingLos$
14:	if $i > 5$ then
15:	$EMA prev \leftarrow EMA$
16:	$EMA \leftarrow emaCalculation(trace)$
17:	if $(precisionModeBF16! = Tr$
18:	$if ((EMAprev - EMA) > \epsilon$
19:	$precisionModeBF16 \leftarrow$
20:	changeToBF16()
21:	else
22:	$countBatchesBF16 \leftarrow countBatchesBF16$
23:	if $(countBatchesBF16 = nc)$
24:	if $((EMAprev - EMA))$
25:	$countBatchesBF16 \leftarrow$
26:	else
27:	precision Mode BF16
28:	changeToMP()
29:	$countBatchesBF16 \leftarrow$

Barcelona

// Number of consecutive MP batches
// Number of consecutive BF16 batches
// Defines EMA reduction threshold

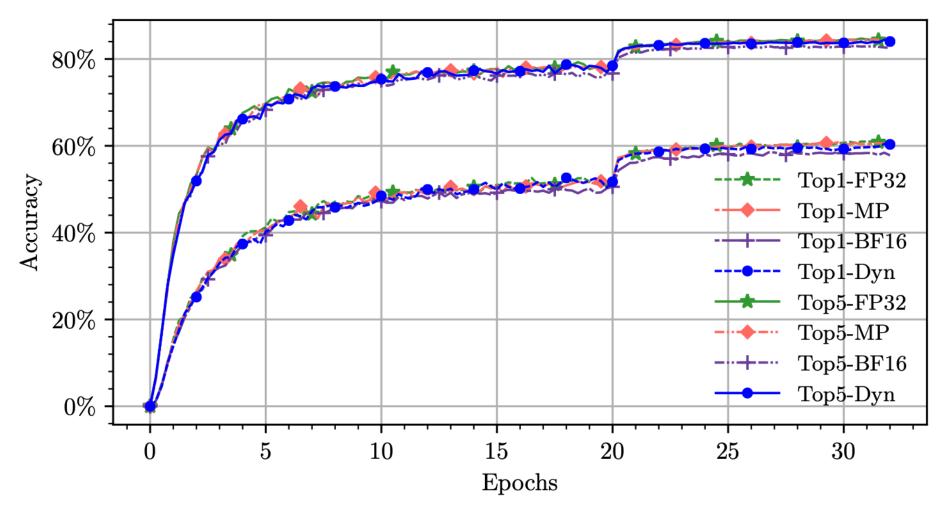
// Indicates current precision mode, True means BF16
/ Counts how many numBatchesBF16 have been executed sMP // Number of batches per training loop iteration

// numBatchesTrain batches precisionModeBF16
ngLoss
// Initial history to calculate EMA
pss)

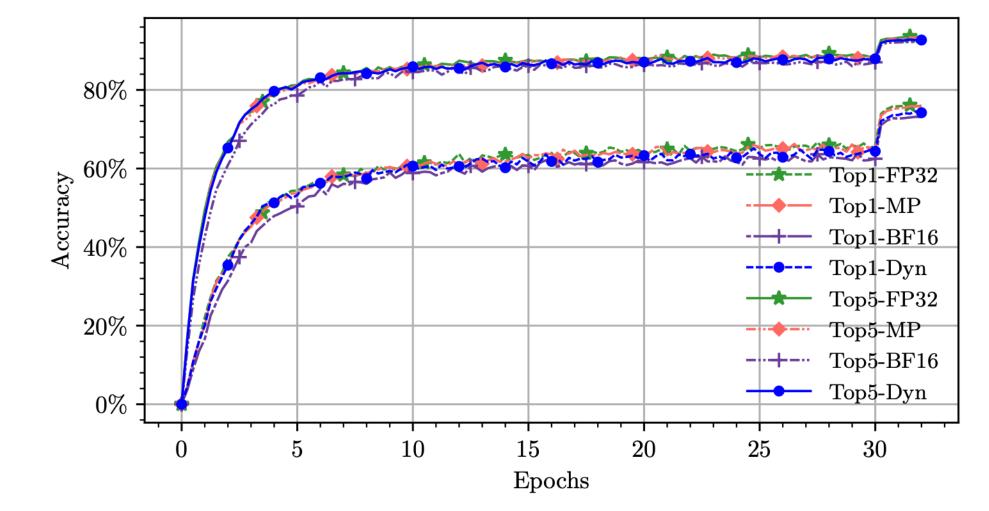
ainingLoss, EMAprev) // Each numBatchesMP
rue) then
emaThreshold) then // If training loss goes down
- True

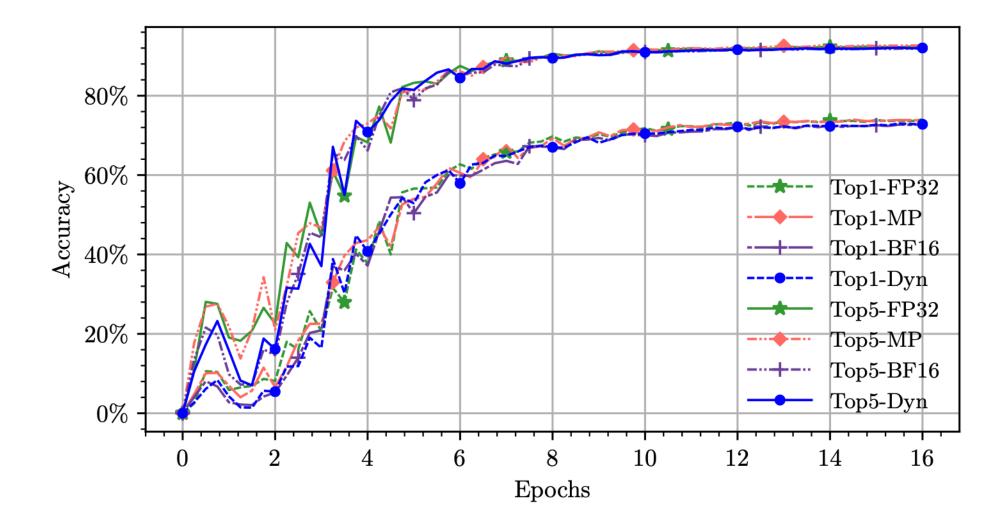
// Switch precision to BF16

Object Classification DNNs



AlexNet





Inception

ResNet-50

Object Classification DNNs

Model	Epoch	FP	FP32		MP		Dynamie	C	BF16		
	- r	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	BF16FMA	Top-1	Top-5	
AlexNet	32	60.79%	84.50%	60.18%	84.43%	60.32%	84.02%	94.60%	57.80%	82.56%	
Inception	16	74.01%	92.36%	73.73%	92.67%	72.80%	92.02%	95.55%	72.03%	92.05%	
ResNet-50	32	75.96%	93.37%	75.70%	93.20%	74.20%	92.70%	96.40%	72.97%	92.30%	

- Full BF16 FMA instructions fail to deliver comparable accuracy levels.
- We proposed a *Dynamic* training technique that performs up-to 94.6% of FMAs using full BF16 ones.
- We used Caffe and PyTorch to show the versatility of FASE to work seamlessly on different DNN frameworks

Conclusions

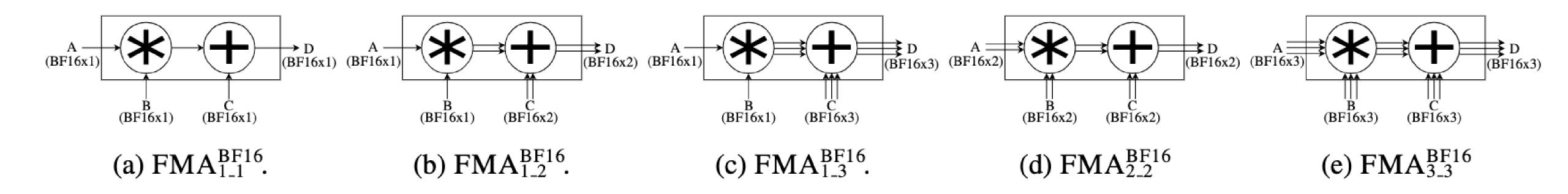
A BF16 FMA is All You Need for DNN Training

Barcelona Supercomputing Center Centro Nacional de Supercomputación

22

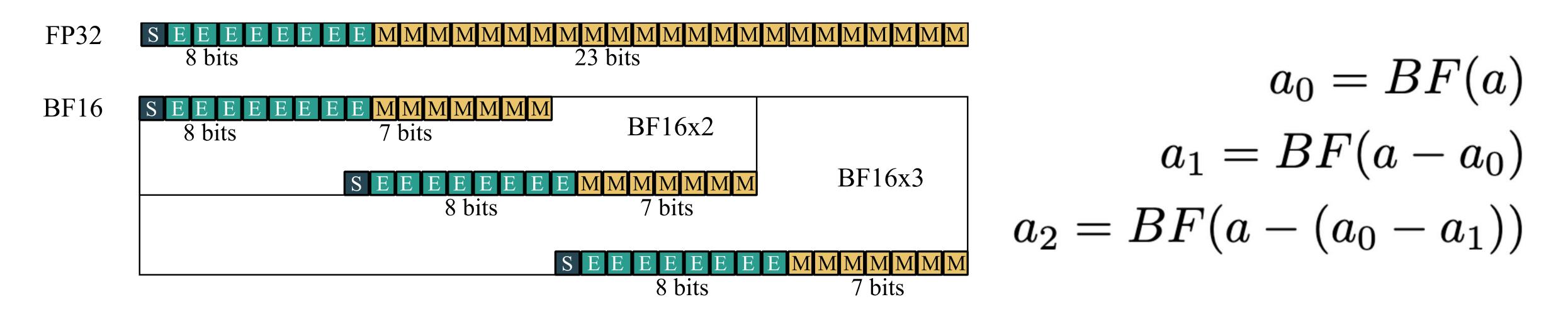
Introduction

- First approach to train state-of-the-art DNNs entirely using the BF16 format • We propose a new class of FMA operators, $FMA_{N M}^{BF16}$ They represent operands A and B using N BF16 literals (BF16xN) • Input C and output D use M BF16 literals (BF16M)



The BF16xN Data Representation

mantissa bits.

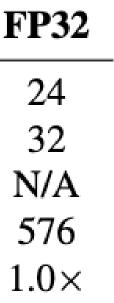


• The BF16xN data representation format is a compound datatype composed of N BF16 literals. The BF16x1 format uses 1-bit and 8-bits storage for sign and exponent, like FP32, and 7 explicit

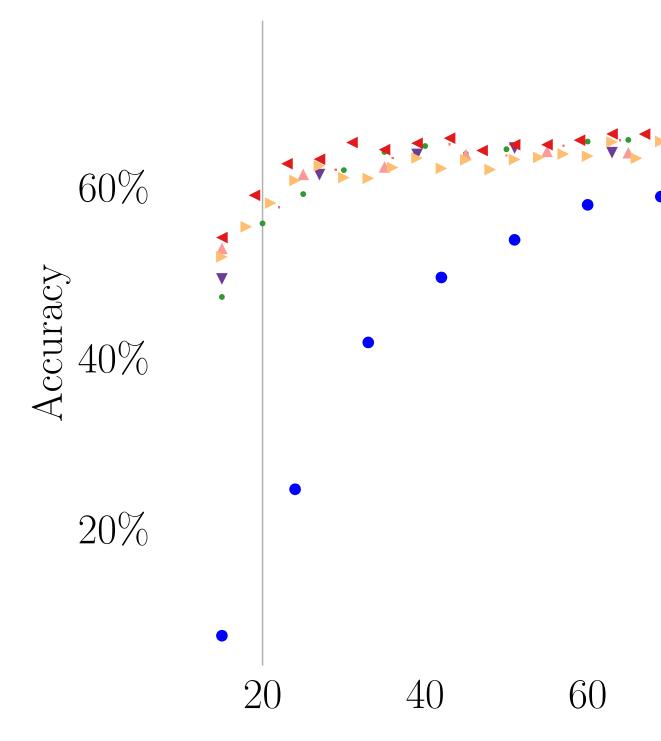
Characterization of FMA_{N M}^{BF16} Units

FMA ^{BF16}	FMA ^{BF16}	FMA ^{BF16}	FMA ^{BF16}	FMA ^{BF16} {3}	FMA ^{BF16} {4}	FMA ^{BF16} {6}	FMA ^{BF16} {9}	F
Multiplier mantissa bits	8	8	8	$[15, 16^*]$	16	$[23, 24^{**}]$	24	
Maximum input bitwidth	16	32	48	32	32	48	48	
# BF16 multiplications	1	1	1	3	4	6	9]]
# Area Units	64	64	64	192	256	384	576	
Speed-up wrt FP32 (equivalent area)	9.0×	9.0×	9.0×	3.0×	2.3 imes	$1.5 \times$	$1.0 \times$	1

• To characterize our $FMA_{N M}^{BF16}$ units we use the observation that the area of an FMA is dominated by the multiplier as it grows quadratically with mantissa size. An FP32 FMA requires $24^2 = 576$ area units, while an FMA with BF16 multiplier inputs would require just $8^2 = 64$ units.



• The figure shows the results obtained when training ResNet101 using CIFAR100 dataset



Evaluation

• FMA₂₂₂^{BF16}{3} outperforms the other operators while keep using BF16 during the whole training time

•						
	•	• •	•	•	FP32	•
•					MP	
				•	$FMA_{1_1}^{BI}$	716 L
				▼	FMA_{1}^{BI}	716 2
					FMA_{1}^{BI}	716 3
				•	$FMA_{2_2}^{BI}$	${}_{2}^{716}{3}$
					FMA_{2}^{BI}	${}_{2}^{716}{4}$
					FMA _{3_3}	${}^{716}_{3}{6}$
					$\mathrm{FMA}_{3_3}^{BI}$	${}^{716}_{3}\{9\}$
80 E	pochs	100	12	20	140	160

Conclusions

- hardware instructions but delivers FP32 training accuracy.
- In contrast with previous implementations, we do not employ FP32 routines
- All FMA instructions use BF16 arithmetic for the whole training process
- We evaluate the operators on seven different DNN workloads ResNet18, ResNet34, ResNet50, ResNet101 and MobileNetV2 on CIFAR10/100
 - LSTMx2 on PTB dataset
 - A transformer-based model on the IWSLT16 dataset

• We propose a new class of FMA operators, $FMA_{N\ M}^{BF16}$, that entirely relies on BF16 FMA

Future Work

- Support AMX extensions on FASE
- Evaluate other reduced precision datatypes • FP8, INT8, INT4
 - Dynamic compound datatypes
 - Evaluation of possible new numerical datatypes

Barcelona Supercomputing Center

Centro Nacional de Supercomputación

Intel®

THANKS

John Osorio Ríos (john.osorio.rios@intel.com) Adria Armejach (adria.armejach@bsc.es)