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DNNs Overview

● The use of Deep Neural Networks is becoming 
ubiquitous.

● Medicine, sports, chemistry, physics are fields where 
DNNs are widely used nowadays.

● Models and datasets continue to become deeper and 
larger. Increasing computational needs.
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Motivation

● Training Deep Neural Networks (DNNs) is a costly task in terms of computational resources
like execution time or power.

● There are approaches able to reduce training costs without reducing DNNs accuracy. These
approaches rely on reduced computer number formats.

● We propose:
○ A method to evaluate several reduced precision datatype approaches (FASE).
○ A technique to dynamically adapt the numerical precision during the training phase.
○ A set of compound datatypes relying on a specific datatype.
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Outline

● A Fast, Accurate and Seamless Emulator for Custom Numerical Formats (FASE) (Link)
● Dynamically Adapting Floating-Point Precision to Accelerate Deep Neural Network

Training (Link)
● A BF16 FMA is All You Need for DNN Training (Link)
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A Fast, Accurate and 
Seamless Emulator for 

Custom Numerical 
Formats (FASE)
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A Fast, Accurate and Seamless Emulator for Custom 
Numerical Formats

● FASE is a tool that enables the emulation of custom numerical formats on any application.
○ It enables HW architects to understand numerical behavior before committing to costly HW

implementations
○ It is based on Intel PIN
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A Fast, Accurate and Seamless Emulator for Custom 
Numerical Formats

● There are various state-of-the-art techniques to emulate reduced precision approaches.
○ Coarse-grain granularity (Function level)
○ Fine-grain granularity (Instruction level)

Steps for coarse-grain 
emulation on a 

convolutional layer.



Design Principles
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● The simplicity is the most important feature of FASE
○ It enables Fast, Accurate and Seamless emulation of custom numerical formats
○ It emulates code of external dynamically linked libraries



Workload Characterization
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● We analyze DNN workloads
○ Around 98% of FP instructions are Fused-Multiply-Add (FMA)
○ We focus on instrumenting all FMA instructions in order to emulate the reduced precision

approaches



Implementation
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Emulation Accuracy

● Methodology: We use SGEMM to multiply two matrices using the Intel Math Kernel Library.
● Results: The figure compares the relative error when employing fine-grain and coarse-grain

emulation on the Intel MKL SGEMM kernel.
● Using FASE (fine-grain):
○ It is close to what would be observed on real

HW
○ Able to track errors that accumulate per

instruction
● Using coarse-grain:
○ Results more accurate that they should
○ Cannot capture errors that accumulate per

instruction
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Emulation Overhead Measurement

● Results: The table shows the emulation latencies introduced by FASE when converting in a
fine-grain manner the input and output operands to BF16 with RNE rounding.
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Large Scale Experiments

● Methodology: To show FASE supports real workloads we perform a set of large-scale
experiments. These tests consider the use of several DNN models, datasets and numerical
datatypes.

● Results: The table shows the results of using FASE for several full DNN training workloads.



Conclusions
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● We propose FASE, an emulation tool for custom numerical formats. FASE is accurate, fast,
and seamless.

● Our evaluation demonstrates that FASE is more accurate than other state-of-the-art proposals
that employ coarse-grain emulation, uncovering relative errors that appear only in fine-grain
emulation.

● We demonstrate that by applying both the basic block and vectorization optimizations, FASE
latency overheads are manageable, ranging between 17× to 39× for a wide variety of
workloads.



Dynamically Adapting 
Floating-Point Precision 

to Accelerate Deep 
Neural Network Training
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State-of-the-Art FMAs for Training
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Analysis for Evaluated DNNs

17Static Techniques on ResNet-50



Dynamic Precision Training
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Object Classification DNNs
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AlexNet Inception

ResNet-50



Object Classification DNNs
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Conclusions

● Full BF16 FMA instructions fail to deliver comparable accuracy levels.
● We proposed a Dynamic training technique that performs up-to 94.6% of FMAs using full BF16 

ones.
● We used Caffe and PyTorch to show the versatility of FASE to work seamlessly on different DNN 

frameworks
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A BF16 FMA is All You 
Need for DNN Training
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Introduction

● First approach to train state-of-the-art DNNs entirely using the BF16 format
● We propose a new class of FMA operators,
● They represent operands A and B using N BF16 literals (BF16xN)
● Input C and output D use M BF16 literals (BF16M)
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The BF16xN Data Representation

● The BF16xN data representation format is a compound datatype composed of N BF16 literals. 
The BF16x1 format uses 1-bit and 8-bits storage for sign and exponent, like FP32, and 7 explicit 
mantissa bits.
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Characterization of 𝐅𝐌𝐀𝐍_𝐌
𝐁𝐅𝟏𝟔 Units

● To characterize our 𝐅𝐌𝐀𝐍_𝐌
𝐁𝐅𝟏𝟔 units we use the observation that the area of an FMA is

dominated by the multiplier as it grows quadratically with mantissa size. An FP32 FMA requires
242 = 576 area units, while an FMA with BF16 multiplier inputs would require just 82 = 64 units.
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Evaluation

● The figure shows the results obtained when training ResNet101 using CIFAR100 dataset
○ 𝐅𝐌𝐀2_2

𝐁𝐅𝟏𝟔{3} outperforms the other operators while keep using BF16 during the whole training time
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Conclusions

● We propose a new class of FMA operators, 𝐅𝐌𝐀𝐍_𝐌
𝐁𝐅𝟏𝟔, that entirely relies on BF16 FMA

hardware instructions but delivers FP32 training accuracy.
● In contrast with previous implementations, we do not employ FP32 routines
● All FMA instructions use BF16 arithmetic for the whole training process
● We evaluate the operators on seven different DNN workloads
○ ResNet18, ResNet34, ResNet50, ResNet101 and MobileNetV2 on CIFAR10/100
○ LSTMx2 on PTB dataset
○ A transformer-based model on the IWSLT16 dataset
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Future Work

● Support AMX extensions on FASE
● Evaluate other reduced precision datatypes
○ FP8, INT8, INT4
○ Dynamic compound datatypes
○ Evaluation of possible new numerical datatypes
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