Exploring Low-Precision Formats
in MAC Units for DNN Training

Silviu Filip
Inria Rennes
silviu.filip@inria.fr

joint work with Olivier Sentieys, Sami Ben Ali,
Mariko Tatsumi, Guy Lemieux

(&:1RISA

&Z’Ztla/- !“! 8~S =>'\'/<= Université
ot 7\ de Rennes

TARAN

Overview

Introduction

- Motivation: energy-efficient ML & the need for compression

- Quantization & low-precision computations for DNN training
Quantization for training acceleration

« Custom precision simulation tools for DNN training acceleration
« Mixed precision MAC design space exploration for DNN training

Summary & conclusions

Deep neural networks are growing fast

1014
2021: Extremely large
~ . 12
012 NNs (N ~ 1.6-10>)
2017: Very large
NNs (N ~ 137 - 10°)
o)
c 10 |
= 10
8 2013: Google/Y!
qh) (N ~ 109)
8 |
5 10
= .
© 2009: Hinton’'s
C .6 Deep Belief Net
o 10 (N ~ 107)
=
.20
Q 1041 1988: NetTalk
= (N ~ 2109
102_
943: First NN
(N ~ 10)

101940 1950 1960 1970 1930 1990 2000 2010 2020 2030

Deep neural networks are growing fast

1

 —

 —

Weight parameter count

0" 2025: N = 10
2021: Extremely larg
012. NNs (N ~ 1.6 -10'%)
2017: Very large
NNs (N ~ 137 - 10°)
010_
2013: Google/Y!
(N ~ 10
108_
2009: Hinton’'s
Deep Belief Net
0.
10 (N ~ 107)
102 1988: NetTalk
(N ~2-10%)
10*-
943: First NN
-~ (N ~ 10)
%940 1950 1960 1970 1980 1990 2000 2010 2020 2030

The data movement bottleneck

Trained DNN model

W[Z] WB]

QX%
4
AN

Compute
Memory p
units Computations
- vector/matrix manipulations
Data movement - done on CPU, GPU, DSP, or
- move input data & model from memory custom accelerators (e.g.,
to compute units FPGA, ASIC)

- send partial results back to memory

The data movement bottleneck

Training a DNN model

W[2] W[3]

QX%
4
AN

Compute
Memory p
units Computations
- vector/matrix manipulations
Data movement - done on CPU, GPU, DSP, or
- move input data & model from memory custom accelerators (e.g.,
to compute units FPGA, ASIC)

- send partial results back to memory

The data movement bottleneck

Training a DNN model

0Z/0W!2 0Z10W]

Compute
units Computations
- vector/matrix manipulations
Data movement - done on CPU, GPU, DSP, or
- move input data & model from memory custom accelerators (e.g.,
to compute units FPGA, ASIC)

- send partial results back to memory

What is DNN quantization?

A visual quantization example:

- using fewer bits per pixel in an image

24 bits per pixel

Image source: Here's why quantization matters for Al, Jilei Hou, 2019

https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai

What is DNN quantization?

During inference (i.e., for a trained network): A visual quantization example:

- using fewer bits per pixel in an image

W[Z] W[3]

$g'<’ "‘&

ql5]

24 bits per pixel

Image source: Here's why quantization matters for Al, Jilei Hou, 2019

https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai

What is DNN quantization?

During inference (i.e., for a trained network): A visual quantization example:
 store network parameters in low precision - using fewer bits per pixel in an image
wiz Wil
/ ! W4
will whl

\Y2,
OB

— R e —
S@dlia 5 "
NP ' ‘
NOET SIS N

24 bits per pixel

Image source: Here's why quantization matters for Al, Jilei Hou, 2019

https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai

What is DNN quantization?

During inference (i.e., for a trained network): A visual quantization example:

» store network parameters in low precision - using fewer bits per pixel in an image
» store/compute intermediate signals in low precision

A\
A
— RN et —
/ ‘\ A'AV " ql°]
\W"“. /'4“. !
NN
g 24 bits per pixel

Image source: Here's why quantization matters for Al, Jilei Hou, 2019

https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai

What is DNN quantization?

During inference (i.e., for a trained network):
- using fewer bits per pixel in an image

A visual quantization example:

» store network parameters in low precision
» store/compute intermediate signals in low precision

0L 0L
OWL2! OW3] 0

NG~

.‘\V

XY O
ARG
4\”@2}. % <
A\\.w/' . oa
24 bits per pixel

During training:

Image source: Here's why quantization matters for Al, Jilei Hou, 2019

https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai

During inference (i.e., for a trained network):

» store network parameters in low precision
» store/compute intermediate signals in low precision

O/
X M0

L R
4\”4:’ A

Kol

50
'S
During training:

» store/compute back propagated gradients in low precision

Image source: Here's why quantization matters for Al, Jilei Hou, 2019

What is DNN quantization?

A visual quantization example:

- using fewer bits per pixel in an image

24 bits per pixel

https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai

Memory usage

storage needed for weights and
and activations is proportional to

the bit width used

FP32
111.125

01010101 101010101

01010101 101010101

INT8
111

01010101

Power consumption

energy is significantly reduced for
both computations and memory

accesses
ADD energy (pJ)
INT8 | INT32 | FP16 | FP32

0.03 0.1 0.4 0.9

30X energy reduction

MULT energy (pJ)

INT8 | INT32 | FP16 | FP32

0.2 3.1 1.1 3.7

18.5X energy reduction

Memory access

energy (pJ)
Cache (64-bit)

8KB

10

32KB

20

1MB

100

DRAM

1300-
2600

Up to 4X

energy
reduction

Sources: Mark Horowitz (Stanford), energy based on ASIC, area based on TSMC 45nm process

Wikimedia Commons

©@®

Quantization effects: the good

Latency Silicon area

8-bit arithmetic and below
requires less area than larger
bit width FP compute units

MULT area (um?2)

INT8 | INT32 | FP16 | FP32

less memory access and simpler
computations lead to faster runtimes
and reduced latency

282 | 3495 | 1640 | 7700

27X area reduction

ADD area (um?2)

INT8 | INT32 | FP16 | FP32

36 137 1360 | 4184

116X area reduction

Why quantization for training?

mcuantization for inference acceleration is popular & widely studied in recent years

muantization for training acceleration is less studied, but still important

Why quantization for training?

mcuantization for inference acceleration is popular & widely studied in recent years

muantization for training acceleration is less studied, but still important

WhY? Estimated cost of training recent NLP models (adapted from [1])
- SOTA models tend to get bigger & bigger, Model Hardware Power (W) _ Hours
requiring more time & memory to train U Sl RO Ll e 12
. growing need & interest for edge/on-site UTErSFOED Flothe 1915.43 84
learning ELMo P100X3 517.66 336
BERTpase V100x64 12041.51 79
BERTbase TPUV2x64 N/A 96
NAS P100X8 1515.43 | 274120
NAS TPUV2x] N/A 32623
GTP-2 TPUV2x32 N/A 168

[1] Energy and Policy Considerations for Deep Learning in NLP, Strubell et al., arXiv:1906.02243, 2019

Why is training expensive?

=during inference/forward path, we need to compute activations

qlv]?

wik+1]

fk+1(a[k+1]a W[k+1])

Why is training expensive?

=during inference/forward path, we need to compute activations

0L
Werny =W —a IW 0Z/0aN! 0L /0y
(1)
=during training (backward path), we also need gradients: 0% /ow! 1]

X Of;., {/owlk1]

X of;, {/oal*t1]

ag/aa[k“]l

« with respect to the activations (the alk] vectors)

- with respect to the parameters (the wlk] vectors)

0% [owlX]

0%/ oalx]

X of,_/ow!k~ 1!

X of,_,/oal*~1]

0L /owlk1]

0L [0x 07 /0y

Why is training expensive?

=during inference/forward path, we need to compute activations

0L
Werny =W —a IW 0Z/0aN! 0L /0y
(1)
=during training (backward path), we also need gradients: 0% /ow! 1]

X Of;., {/owlk1]

X of;., /oal*+1]

ag/aa[k“]l

« with respect to the activations (the alk] vectors)

. with respect to the parameters (the w*! vectors)

° . ° ° . . ° ° ag/aW[k]
=it is hard to reduce precision of operations during training

Why?
 vanishing & exploding gradients during back propagation
: i 0Z [ow!~!]
small updates to parameters, i.e., |w| > ‘03/(%\/‘ w o fowlh-T
X of,_,/oal* 1]

=3 (possibly) large dynamic range is needed
muse floating-point arithmetic

0Z [0X 0L [dy

Floating-point formats

mthe de facto family of formats for working with real numbers in the digital world

Example: The IEEE-754 float32 format

sign exponent (8 bits) mantissa (23 bits)

EO’I’I11100|O1000OOOOOOOOOOOOOOOOOOl
31 30 23 22 0

\\4 s bias (integer constant offset)

x:(—l) Xl (2))(2 L

x=(=1)"X1014x2"""1*=125%x27° = 0.15625

Floating-point formats

mseveral formats are used in practice:

Format Mantissa Exponent Bias Range Unit
size size roundoff

S established |IEEE-754
formats

> emerging formats

= P32 is the workhorse format for training Al models

mthere are several emerging FP formats for Al acceleration

Floating-point formats

mthey offer various tradeoffs in terms of range, precision & performance

FP performance numbers for recent NVIDIA GPU architectures

Peak performance (TFLOPS)

P64 | p32 | toats2 | foib | biioatls

sign

FP32 L[
TF32 [

FP16 []

BF16 [
FP8

(ESM2)

FP8

(EAM3)

Range

exponent

e8

e8

eb

:

e8

Precision

mantissa

m23

m10

m10

Floating-point formats

When, where and how can we use smaller number formats during DNN training?

sign exponent (8 bits) mantissa (23 bits)
Izlo11111oo|o1ooooooooooooooooooooo|
31 30 23 22 0

\\4 / bias (integer constant offset)

x:(—l) Xl (2))(2 L

x=(=1)"X1014x2"""1*=125%x27° = 0.15625

mexponent encoding is a offset-binary representation
e £ =01l — 7TFH) = — 126

_ _ L M =0 M #0 Equation
. Emax = FEwn) — 7Fm) = 127 - . |
(H) +() supnorma (-1) x 0.) X N—126
value
Ol FEw) normal value (=1)" X 1My x 27177
FF) + 0 NaN

Floating-point formats

When, where and how can we use smaller number formats during DNN training?

sign exponent (8 bits) mantissa (23 bits)
Izlo11111oo|o1ooooooooooooooooooooo|
31 30 23 22 0

\\4 / bias (integer constant offset)

x:(—l) Xl (2))(2 L

x=(=1)"X1014x2"""1*=125%x27° = 0.15625

mexponent encoding is a offset-binary representation
e £ =01l — 7TFH) = — 126

_ _ L M =0 M #0 Equation
. Emax = FEwn) — 7Fm) = 127 - b |
(H) +() supnorma (-1) x 0.) X N—126
value
Ol FEw) normal value (=1)" X 1My x 27177
FF) + 0 NaN

Training acceleration landscape

= SOTA training acceleration methods are based on mixed precision computing
Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

Training acceleration landscape

= SOTA training acceleration methods are based on mixed precision computing
Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

1. Keep parameters in HP
W

Training acceleration landscape

= SOTA training acceleration methods are based on mixed precision computing

Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

2. Make LP copy of parameters and
Quantizer FWD/BWD-propagate in LP

a

1. Keep parameters in HP
W

Training acceleration landscape

= SOTA training acceleration methods are based on mixed precision computing

Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

2. Make LP copy of parameters and
Quantizer FWD/BWD-propagate in LP

a

= Mmost compute happens in FWD/BWD-part (GEMM calls
for fully connected and convolutional layers)

1. Keep parameters in HP

W (1) el Wi+

3. Do parameter update in HP

Training acceleration landscape

= SOTA training acceleration methods are based on mixed precision computing

Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

2. Make LP copy of parameters and
Quantizer FWD/BWD-propagate in LP

a

= Mmost compute happens in FWD/BWD-part (GEMM calls
for fully connected and convolutional layers)

=some notable examples:
« 32-bit (fp32) + 16-bit (fp16/bfloat16) arithmetic: on
NVIDIA GPUs (NVIDIA AMP) & Google TPUs [1, 2]
« sub 16-bit & 8-bit training methods: research work [3-7]

1. Keep parameters in HP

W (1) el W)

1] Mixed Precision Training, Micikevicius et al., ICLR 2018 3. Do parameter update in HP
2] A Study of bfloat16 for Deep Learning Training, Kalamkar et al.,

(3] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurlPS 2019

4] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020

1
3
5] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
?

6] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
7] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

An overview of recent results in MP training

SWALP [1] 8 8 N/A 8 8 32 | 703 65.8
S2FP8 [3] (52)/823) | (52 | NA | 52 | (52) | (823 | 703 69.6
HFP8 [2] (4,3) 43) | 69 | (69 | 52 | 69) | 694 69.4
BMS8 [4] (2,5) (2,5) 31 | (69 | @43) | 31 69.7 69.8
FP8-SEB [5] (4,3) 43) | 43) | (43) | 43) |(8.23)| 697 69.0
FP134 [6] (3,4) 34) | 34) | (34) | 34) |(823)| 698 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.
Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019

2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurlPS 2019

(3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020

4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020

5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

2
4

1

3]
5]
>

SWALP [1] 8 8 N/A 8 8 32 | 703 65.8
S2FP8 [3] (52)/823) | (52 | NA | 52 | (52) | (823 | 703 69.6
HFP8 [2] (4,3) 43) | 69 | (69 | 52 | 69) | 694 69.4
BMS [4] (2,5) (2,5) 31 | (69 | @43) | 31 69.7 69.8
FP8-SEB [5] (4,3) 43) | 43) | (43) | 43) |(8.23)| 697 69.0
FP134 [6] (3,4) 34) | 34) | (34) | 34) |(823)| 698 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.

Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019

An overview of recent results in MP training

Some notable ideas:

= use of a shared exponent bias/scaling factor
at the tensor or block level or other similar tensor statistics

Why?

. shifts dynamic range at runtime, following the
distribution of the data (with a small overhead)

Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurlPS 2019
Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020

A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020

A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

2
4

1

3]
5]
>

SWALP [1] 8 8 N/A 8 8 32 | 703 65.8
S2FP8 [3] (52)/823) | (52 | NA | 52 | (52) | (823 | 703 69.6
HFP8 [2] (4,3) 43) | 69 | (69 | 52 | 69) | 694 69.4
BMS8 [4] (2,5) (2,5) 31 | (69 | @43) | 31 69.7 69.8
FP8-SEB [5] (4,3) 43) | 43) | (43) | 43) |(8.23)| 697 69.0
FP134 [6] (3,4) 34) | 34) | (34) | 34) |(823)| 698 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.

Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019

An overview of recent results in MP training

Some notable ideas:

= use of a shared exponent bias/scaling factor
at the tensor or block level or other similar tensor statistics

Why?

. shifts dynamic range at runtime, following the
distribution of the data (with a small overhead)

= scale the loss function before back propagation + rescale
gradients before parameter update

Why?
. shifts gradients in a representable range when using
low precision (i.e., to avoid under/overflows)

Zz - gscaled =2-Z
0L0W =275 - 0L 1.4/ OW

Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurlPS 2019
Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020

A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020

A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

2
4

1

3]
5]
>

SWALP [1] 8 8 N/A 8 8 32 | 703 65.8
S2FP8 [3] (52)/823) | (52 | NA | 52 | (52) | (823 | 703 69.6
HFP8 [2] (4,3) 43) | 69 | (69 | 52 | 69) | 694 69.4
BMS8 [4] (2,5) (2,5) 31 | (69 | @43) | 31 69.7 69.8
FP8-SEB [5] (4,3) 43) | 43) | (43) | 43) |(8.23)| 697 69.0
FP134 [6] (3,4) 34) | 34) | (34) | 34) |(823)| 698 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.

Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019

Some notable ideas:
= rounding used in the quantizer:

stochastic [1] & hysteresis [6]

Why?

An overview of recent results in MP training

. stochastic rounding can recapture information that is
discarded when bits are rounded off

D X~ Xgown Kup — 4
down —
Xup ~ Xdown Xup ~ Xdown
1
v
—
:
1
1
Xdown xup

Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurlPS 2019
Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020

A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021

Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

2
4

1

3]
5]
>

SWALP [1] 8 8 N/A 8 8 32 | 703 65.8
S2FP8 [3] (52)/823) | (52 | NA | 52 | (52) | (823 | 703 69.6
HFP8 [2] (4,3) 43) | 69 | (69 | 52 | 69) | 694 69.4
BMS8 [4] (2,5) (2,5) 31 | (69 | @43) | 31 69.7 69.8
FP8-SEB [5] (4,3) 43) | 43) | (43) | 43) |(8.23)| 697 69.0
FP134 [6] (3,4) 34) | 34) | (34) | 34) |(823)| 698 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.

Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019

An overview of recent results in MP training

Some notable ideas:

= rounding used in the quantizer:
stochastic [1] & hysteresis [6]

Why?
. stochastic rounding can recapture information that is
discarded when bits are rounded off
 hysteresis rounding seems to smooth fluctuations in
param. updates & stabilizes training

_W(t) if w'> @D (W(t_1)>

O (v, D) = -
O\ (W t) — O] i < oGadd (W(;_1)>

Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurlPS 2019
Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020

A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020

A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

2
4

1

3]
5]
>

SWALP [1] 8 8 N/A 8 8 32 | 703 65.8
S2FP8 [3] (52)/823) | (52 | NA | 52 | (52) | (823 | 703 69.6
HFP8 [2] (4,3) 43) | 69 | (69 | 52 | 69) | 694 69.4
BMS [4] (2,5) (2,5) 31 | (69 | @43) | 31 69.7 69.8
FP8-SEB [5] (4,3) 43) | 43) | (43) | 43) |(8.23)| 697 69.0
FP134 [6] (3,4) 34) | 34) | (34) | 34) |(823)| 698 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.

Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019

An overview of recent results in MP training

Some notable ideas:

= rounding used in the quantizer:
stochastic [1] & hysteresis [6]

Why?
. stochastic rounding can recapture information that is
discarded when bits are rounded off
 hysteresis rounding seems to smooth fluctuations in
param. updates & stabilizes training

= smart accumulator design (algorithmic/architectural) to
optimize accuracy at low precision

Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurlPS 2019
Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020

A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020

A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

2
4

1

3]
5]
>

SWALP [1] 8 8 N/A 8 8 32 | 703 65.8
S2FP8 [3] (52)/823) | (52 | NA | 52 | (52) | (823 | 703 69.6
HFP8 [2] (4,3) 43) | 69 | (69 | 52 | 69) | 694 69.4
BMS8 [4] (2,5) (2,5) 31 | (69 | @43) | 31 69.7 69.8
FP8-SEB [5] (4,3) 43) | 43) | (43) | 43) |(8.23)| 697 69.0
FP134 [6] (3,4) 34) | 34) | (34) | 34) |(823)| 698 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.

Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019

An overview of recent results in MP training

Some notable ideas:
= rounding used in the quantizer:
stochastic [1] & hysteresis [6]
Why?
. stochastic rounding can recapture information that is
discarded when bits are rounded off

 hysteresis rounding seems to smooth fluctuations in
param. updates & stabilizes training

= smart accumulator design (algorithmic/architectural) to
optimize accuracy at low precision

Limitations:

= many approaches use coarse-grained simulation results

Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurlPS 2019
Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020

A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020

A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

2
4

1

3]
5]
>

SWALP [1] 8 8 N/A 8 8 32 | 703 65.8
S2FP8 [3] (52)/823) | (52 | NA | 52 | (52) | (823 | 703 69.6
HFP8 [2] (4,3) 43) | 69 | (69 | 52 | 69) | 694 69.4
BMS [4] (2,5) (2,5) 31 | (69 | @43) | 31 69.7 69.8
FP8-SEB [5] (4,3) 43) | 43) | (43) | 43) |(8.23)| 697 69.0
FP134 [6] (3,4) 34) | 34) | (34) | 34) |(823)| 698 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.

Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019

An overview of recent results in MP training

Some notable ideas:

= rounding used in the quantizer:
stochastic [1] & hysteresis [6]
Why?
. stochastic rounding can recapture information that is
discarded when bits are rounded off

 hysteresis rounding seems to smooth fluctuations in
param. updates & stabilizes training

= smart accumulator design (algorithmic/architectural) to
optimize accuracy at low precision

Limitations:

= many approaches use coarse-grained simulation results

= HW synthesis results are not that common (yet!)

Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurlPS 2019
Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020

A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020

A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

2
4

1

3]
5]
>

SWALP [1] 8 8 N/A 8 8 32 | 703 65.8
S2FP8 [3] (52)/823) | (52 | NA | (52 | (52) |(@®23) | 703 69.6
HFP8 [2] (4,3) 43) | 69 |69 | (52 | 69) | 694 69.4
BMS8 [4] (2,5) (2,5) 31 | (69 | 43) | 31 69.7 69.8
FP8-SEB [5] (4,3) 43) | @43) | (43) | 43) [(8.23)| 697 69.0
FP134 [6] (3,4) 34) | 34) | (34) | 34) [(823)| 698 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.

Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019

An overview of recent results in MP training

Some notable ideas:

= rounding used in the quantizer:
stochastic [1] & hysteresis [6]

Why?
. stochastic rounding can recapture information that is
discarded when bits are rounded off
 hysteresis rounding seems to smooth fluctuations in
param. updates & stabilizes training

= smart accumulator design (algorithmic/architectural) to
optimize accuracy at low precision

Limitations:

= many approaches use coarse-grained simulation results

= HW synthesis results are not that common (yet!)

= accumulator results are usually in high precision

Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurlPS 2019
Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020

A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020

A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Simulation support for MP training

Fast ++ + + + +
Accurate — + + + +
Seamless — _ + _ .

Dynamic Libraries — — + _ _
Independent — — + — _
Platforms CPU/GPU CPU/GPU CPU CPU/GPU/FPGA CPU/GPU/FPGA

11 QPyTorch: A Low-Precision Arithmetic Simulation Framework, Zhang et al., arXiv:1910.04540, 2019

TensorQuant — A Simulation Toolbox for Deep Neural Network Quantization, Loroch et al., arXiv:1710.05758, 2017

FASE: A Fast, Accurate and Seamless Emulator for Custom Numerical Formats, Osorio et al., ISPASS 2022

MPTorch and MPArchimedes: Open Source Frameworks to Explore Custom Mixed-Precision Operations for DNN Training on Edge Devices, Tatsumi et al., ROAD4NN 2021
Mixing Low-Precision Formats in Multiply-Accumulate (MAC) Units for DNN Training, Tatsumi et al., FPT 2022

2
3
A
5

Simulation support for MP training

Fast ++ + + + +
Accurate — + + + +
Seamless — _ + _ .

Dynamic Libraries — — + _ _
Independent — — + — _
Platforms CPU/GPU CPU/GPU CPU CPU/GPU/FPGA CPU/GPU/FPGA

MPTorch repository: https://github.com/mptorch/mptorch

1] QPyTorch: A Low-Precision Arithmetic Simulation Framework, Zhang et al., arXiv:1910.04540, 2019
2] TensorQuant — A Simulation Toolbox for Deep Neural Network Quantization, Loroch et al., arXiv:1710.05758, 2017
(3] FASE: A Fast, Accurate and Seamless Emulator for Custom Numerical Formats, Osorio et al., ISPASS 2022

1
3
4] MPTorch and MPArchimedes: Open Source Frameworks to Explore Custom Mixed-Precision Operations for DNN Training on Edge Devices, Tatsumi et al., ROAD4NN 2021
5] Mixing Low-Precision Formats in Multiply-Accumulate (MAC) Units for DNN Training, Tatsumi et al., FPT 2022

Archimedes-MPO & MPTorch goals

=\vehicles for producing:
- mixed/low precision DNN training accelerator hardware prototypes
» explore novel algorithms for mixed precision DNN training

Work in progress

Starting topic: explore multiply-accumulate (MAC) unit design space

Archimedes-MPO Overview

FP32 LPy

float2lp

HP ‘ FP32
= extends TinyDNN [1] C++ deep learning library: @ a el
- support for custom precision fixed-point and floating-point LPy a

« GPU & FPGA versions with custom GEMM kernels

qlK]

Forward Path LP, FPGA GEMM Kernel

m GEMM kernel on FPGA: oSS
« adds custom precision support to prior work [2]:

» data type converter (FP32 < LP)

» custom multiplier and adder (MAC) in HLS (Vitis HLS 2020.2)

e parametrizable architecture:

LP,

» currently using 16 X 4 systolic array (@ 280MHz) 0.5/ dalk+1]

LP, FP32

« one HW kernel is synthesized @ a
« Xilinx ZCU104 development board IH LP,

= GEMM kernel on GPU: FPGA GEMM Kernel
« bit-accurate with the FPGA version
« more convenient to deploy & test

X

LP
LP
LPy ¥ ! FP32
CO—(5
IIIIIIII LP

float2lp
[1] https://github.com/tiny-dnn/tiny-dnn FPGA GEMM Kernel

[2] Flexible Communication Avoiding Matrix Multiplication on FPGA with HLS, de Fine Licht et al., FPGA 2020

X

Archimedes-MPO FPGA Block Diagram

PE 16 ,
*V *V v ..A..
] o]] e
PE 15 r,
w3 { 11 |}
A 4 v X
o] o]] [
o
o
o A ?
PE 1 . 1
----------------- g

GEMM Kernel H
(FPGA) ost
PS DDR4
(2GB)
x
\ 4
DDR
Controller
Read A — TinyDNN
FP32toLPFP PetaLinux
Read B
FP32toLPFP
core0 | core0O | coreO | coreO
FP32toLPFP
Wri:e c ' Zynq UltraScale+MPSoC

MAC Design Space Exploration

mstart by looking at the multiplier and accumulator separately

Multiplier

= floating-point:

o limit input mantissa size to 3 bits — use LUTs

for multiplying operand mantissas
« basic configuration (CFG-1):

» support for NaNs/=x oo
» round to nearest, subnormals

= fixed-point:
o integer multiplier with output rounded to input data type
« uses DSP blocks because required fixed-point formats are wider

FP32 (no DSP)

FP32
FP16/bfloat16
E6M3 (CFG-1)
ESM3 (CFG-1)
EAM3 (CFG-1)

Q16.16

Q8.8

Q7.7

Q6.6

987
374
195/180
115
36
/8
279
106
93
31

/O precision ___LUTs __ DSPs_

b O O O - N O

MAC Design Space Exploration
mstart E)y Iczoking at the multiplier and accumulator separately m

MUItlpller FP32 (no DSP) 987 O
= floating-point: FP32 374 2
o limit input mantissa size to 3 bits — use LUTs FP16/bfloat16 | 195/180 1
for multiplying operand mantissas E6M3 (CFG-1) 115 O
« basic configuration (CFG-1): E5M3 (CFG-1) 86 0
» support for NaNs/=x oo E4AM3 (CFG-1) 78 O
» round to nearest, subnormals Q16.16 279 4
= fixed-point: 08.8 106 |
o integer multiplier with output rounded to input data type Q7.7 93
. uses DSP blocks because required fixed-point formats are wider Q6.6 81

mpetter resource usage for small floating-point vs fixed-point in training accuracy results (later)

MAC Design Space Exploration

mstart by looking at the multiplier and accumulator separately

Multiplier

mdecrease resource use by gradually removing ancillary support:

CFG-2: subnormal output removal
o information loss + LUT reduction

701
CFG-3: output rounding removal

e restores information + output length increases

(@)
()

Ul
o

CFG-4: NaN encoding removal
e NaN values become normal values

LUT Count
N
o

W
o

e remapping oo to all 1 mantissa

N
)

CFG-5 & CFG-6: alternative subnormal inputs
o« CFG-5 treats subnormals as normal values E6M2 E5M2 E6M1 E5M1
o« CFG-6 truncates all subnormals to zero Area of floating-point multiplier variants

(-
o

MAC Design Space Exploration

mstart by looking at the multiplier and accumulator separately

Multiplier

mdecrease resource use by gradually removing ancillary support:

CFG-2: subnormal output removal
o information loss + LUT reduction

70 -

CFG-3: output rounding removal
e restores information + output length increases

(@)
()

Ul
o

CFG-4: NaN encoding removal
e NaN values become normal values

LUT Count
N
o

e remapping oo to all 1 mantissa

N
)

CFG-5 & CFG-6: alternative subnormal inputs
e CFG-5 treats subnormals as normal values
e CFG-6 truncates all subnormals to zero

W
o

(-
o

E6M2 ES5M2 E6M1 ESM1

Area of floating-point multiplier variants

mover 50% area reduction going from CFG-1 to CFG-5/CFG-6

MAC Design Space Exploration

mstart by looking at the multiplier and accumulator separately

Multiplier

mdecrease resource use by gradually removing ancillary support:

CFG-2: subnormal output removal
o information loss + LUT reduction

CFG-3: output rounding removal
e restores information + output length increases

CFG-4: NaN encoding removal
e NaN values become normal values

mantissa

CFG1 to CFG3

NaN/oo
conventional

custom

CFG4 to CFG6

conventional
CFG1 to CFG4

Subnormal
custom
CFG5

truncate
CEFG6

e remapping oo to all 1 mantissa

CFG-5 & CFG-6: alternative subnormal inputs
e CFG-5 treats subnormals as normal values
e CFG-6 truncates all subnormals to zero

b00
b01
b10
bll

00
NaN
NaN
NaN

65,536

81,920

98,304
00

0
1.53E-5
3.05E-5
4.58E-5

0
3.81E-5
4.58E-5
5.34E-5

Alternative encoding schemes for ESM2

mover 50% area reduction going from CFG-1 to CFG-5/CFG-6
mprefer CFG-5 due to increased representation range

oSO OO

MAC Design Space Exploration

mstart by looking at the multiplier and accumulator separately

Accumulator

= |00k at low-precision floating-point and fixed-point designs:

. fixed-point: saturation logic

. floating-point: subnormals, swapping, operand shifting, extra bits

Area of accumulator

FP-mult FP-mult Accumulator

input (CFG5) output LUTs DSPs
FP32 FP32 189 2
E6M3 E7TM7 255 0
E6M2 E7TM5 185 0
E6M1 E7M3 187 0

~ E5M3 | E6M7 || 242 0 |

ESM2 E6M)S 187 0
ESM1 E6M3 165 0
- Q16.16 89 0
- Q8.13 55 0
- Q8.8 43 0
- Q7.7 35 0
- Q6.6 32 0

MAC Design Space Exploration

mstart by looking at the multiplier and accumulator separately

Accumulator

= |00k at low-precision floating-point and fixed-point designs:

. fixed-point: saturation logic

. floating-point: subnormals, swapping, operand shifting, extra bits

mfixed-point designs more efficient
(NO 1/O alignment shifters or rounding)

Area of accumulator

FP-mult FP-mult Accumulator

input (CFG5) output LUTs DSPs
FP32 FP32 189 2
E6M3 E7TM7 255 0
E6M2 E7TM5 185 0
E6M1 E7M3 187 0

~ E5M3 | E6M7 || 242 0 |

ESM2 E6M)S 187 0
ESM1 E6M3 165 0
- Q16.16 89 0
- Q8.13 35 0
- Q8.8 43 0
- Q7.7 35 0
- Q6.6 32 0

MAC Design Space Exploration

mstart by looking at the multiplier and accumulator separately

Accumulator

= |00k at low-precision floating-point and fixed-point designs:

. fixed-point: saturation logic

. floating-point: subnormals, swapping, operand shifting, extra bits

mfixed-point designs more efficient
(NO 1/O alignment shifters or rounding)

Full MAC unit

mfloating-point multiplier + fixed-point acc. ?

Area of accumulator

FP-mult FP-mult Accumulator

input (CFG5) output LUTs DSPs
FP32 FP32 189 2
E6M3 E7TM7 255 0
E6M2 E7TM5 185 0
E6M1 E7M3 187 0

~ E5M3 | E6M7 || 242 0 |

ESM2 E6M)S 187 0
ESM1 E6M3 165 0
- Q16.16 89 0
- Q8.13 55 0
- Q8.8 43 0
- Q7.7 35 0
- Q6.6 32 0

MAC Design Space Exploration

mstart by looking at the multiplier and accumulator separately

Accumulator

= |00k at low-precision floating-point and fixed-point designs:

. fixed-point: saturation logic

. floating-point: subnormals, swapping, operand shifting, extra bits

mfixed-point designs more efficient
(NO 1/O alignment shifters or rounding)

Full MAC unit

mfloating-point multiplier + fixed-point acc. ?
« requires float-to-fixed converters (data shifters)
« type conversion cannot be ignored

FP-mult FP-mult Accumulator Converter (to Q8.13)
input (CFG5) output LUTs DSPs LUTs
FP32 FP32 189 2 -
E6M3 E7M7 255 0 116
E6M?2 E7M5 185 0 103
E6M1 E7M3 187 0 72
- B5M3 | E6M7 || 242 o0 | 97
ESM?2 E6M)5 187 0 81
ESM1 E6M3 165 0 67
- Q16.16 89 0 -
- Q8.13 55 0 -
- Q8.8 43 0 -
- Q7.7 35 0 -
- Q6.6 32 0 -

Area of accumulator and data converter

Training Results

Experimental setting

=image classification tasks using:
o ResNet-20 [1] & VGG16 [2] CNN architectures with CIFAR-10 dataset

« ResNet-50 [1] CNN on subset of the ImageNet dataset (ImageWoof)

moptimizer (SGD + momentum) and hyperparam. & preprocessing
based on the original papers

= Use adaptive loss scaling [3]

[1] Deep Residual Learning for Image Recognition, He et al., CVPR 2016
[2] Very Deep Convolutional Neural Networks for Large-Scale Image Recognition, Simonyan et al., ICLR 2015

[3] Mixed Precision Training, Micikevicius et al., ICLR 2018

Training Results

Experimental setting

=image classification tasks using:
o ResNet-20 [1] & VGG16 [2] CNN architectures with CIFAR-10 dataset

« ResNet-50 [1] CNN on subset of the ImageNet dataset (ImageWoof)

moptimizer (SGD + momentum) and hyperparam. & preprocessing
based on the original papers

= Uuse adaptive loss scaling [3]

[1] Deep Residual Learning for Image Recognition, He et al., CVPR 2016
[2] Very Deep Convolutional Neural Networks for Large-Scale Image Recognition, Simonyan et al., ICLR 2015

[3] Mixed Precision Training, Micikevicius et al., ICLR 2018

Training Results

Impact of loss scaling

ResNet-2
- = 2 &
X - FP32
> ESMm
o - E4Mm
S ESMm, with LS
¥ E4Mm, with LS
< -
—”’.—'-——.
2 4 6 2 4 6

#Mantissa Bits #Mantissa Bits

Loss scaling impact on test accuracy when using E4 and E5 multipliers

=|0ss scaling important to keep gradients in representable range when using small formats
msimilar trends when varying the format/precision in the accumulators

Training Results

Impact of loss scaling

ResNet-2
- -

X - FP32
> ESMm
o - E4Mm
S E5Mm, with LS
¥ E4Mm, with LS
< -

2 4 6 2 4 6

#Mantissa Bits #Mantissa Bits

Loss scaling impact on test accuracy when using E4 and E5 multipliers

=|0ss scaling important to keep gradients in representable range when using small formats
msimilar trends when varying the format/precision in the accumulators
mE4AM2 looks like a good place to start for these examples

Training Results

Multiplier variants

ResNet-20 (E4Mm) VGG16 (E4AMm)

80 -

&

> 60 - ——— FP32

g —e— E4M5

= 40 - —e— E4MA4

O . E4AM3

< 20 - —o— E4M2
—e— E4M1

CFG1 CFG2 CFG3 CFG4 CFG5 CFG6 CFG1 CFG2 CFG3 CFG4 CFG5 CFG6
Config Name Config Name

Multiplier variant impact on test accuracy

Training Results

Multiplier variants

ResNet-20 (E4Mm) VGG16 (EAMm)

. 80 -

2

> 60 - ——— FP32

g —e— FE4M5

= 40 - —e— E4AM4

O E4AM3

)

< 20 - —o— E4M2
—e— E4M1

CFG1 CFG2 CFG3 CFG4 CFG5 CFG6 CFG1 CFG2 CFG3 CFG4 CFG5 CFG6
Config Name Config Name

Multiplier variant impact on test accuracy

mremoving subnormal output support (CFG—2) hurts accuracy significantly

Training Results

Multiplier variants

ResNet-20 (E4Mm) VGG16 (EAMm)

. 80 -

2

> 60 - ——— FP32

% —e— FE4M5

= 40 - —e— E4AM4

O EAM3

)

< 20 - —o— E4AM2
—eo— E4M1

CFG1 CFG2 CFG3 CFG4 CFG5 CFG6 CFG1 CFG2 CFG3 CFG4 CFG5 CFG6
Config Name Config Name

Multiplier variant impact on test accuracy

mremoving subnormal output support (CFG—2) hurts accuracy significantly
=output rounding removal (CFG-3), NaN encoding removal (CFG—4),
alternative subnormal inputs (CFG-5) restores accuracy

Training Results

Accumulator variants: floating-point

ResNet-2

Accuracy (%)

2 4 6 2 4 6
#Mantissa Bits #Mantissa Bits

Floating-Point Accumulator impact on test accuracy

maccuracy more sensitive to exponent width than mantissa width (even with loss scaling)

Training Results

Accumulator variants: floating-point

ResNet-2

Accuracy (%)

2 4 6 2 4 6
#Mantissa Bits #Mantissa Bits

Floating-Point Accumulator impact on test accuracy
maccuracy more sensitive to exponent width than mantissa width (even with loss scaling)

=»F5M5 seems like a good choice
minvestigating accumulation strategies might help

Training Results

Accumulator variants: fixed-point

ResNet-20

B O 0
o O -

Accuracy (%)

N
o

10 15 20
#Fraction Bits

20 -

VGG16

--- FP32
—eo— fixed-point

10

15 20
#Fraction Bits

Fixed-Point Accumulator (Q8.f) impact on test accuracy

=|arger format needed: Q8.12

Training Results

Full MAC configuration

100
----88:1b---------

80
S
> 00
@
©
-
S 40-
<

20 -

10.00
E4AM?2

MAC configurations impact on test accuracy (ResNet20 + CIFAR-10)

mstart with EAM2 (CFG-5) multiplier + ESM5/Q8.12 (green/orange) accumulator

Training Results

Full MAC configuration

100
-===88:15------- e SR e L

80
S
> 00-
@
©
-
S 40-
<

20 -

10.00 10.00
E4AM?2 ES5M2

MAC configurations impact on test accuracy (ResNet20 + CIFAR-10)

mstart with EAM2 (CFG-5) multiplier + ESM5/Q8.12 (green/orange) accumulator

mincreasing floating-point multiplier input format to E5SM2 (CFG-5) (blue)
restores accuracy in all-FP MAC, but not for fixed-point accumulator

Training Results

Full MAC configuration
100

____88_.1.5. ____________________ N 9!-.-9.4__99_'_9_5____

Accuracy (%)
(@)} oo
© 9

S
o

N
()

10.00 10.00

E4AM?2 E5M2 E5M2
MAC configurations impact on test accuracy (ResNet20 + CIFAR-10)

mstart with E4AM2 (CFG-5) multiplier + ESM5/Q8.12 (green/orange) accumulator

mincreasing floating-point multiplier input format to E5SM2 (CFG-5) (blue)
restores accuracy in all-FP MAC, but not for fixed-point accumulator

mgoing to Q8.13 (red) accumulator restores mixed float/fixed MAC accuracy

Training Results

Full MAC configuration: system-level area and test accuracy

ResNet-20/
CIFAR-10
configurations LUTs DSPs Acc. (%)
FP32 58,420 320 91.85
ESM2(CFG5) + E6MS 42,640 0 91.04
ESM2(CFG5) + Q8.13 43,471 0 90.95

=25% LUT count reduction + no DSPs compared to a FP32 design

mhigher system-level LUT count for fixed point configuration:
« downstream interconnect + buffering logic for wider accum. output

mfurther investigation needed on accumulation techniques at MAC and system level (e.g. [1])

[1] An FPGA-Specific Approach to Floating-Point Accumulation and Sum-Of-Products, de Dinechin et al., FPT 2008

Training Results

Full MAC configuration: system-level area and test accuracy

ResNet-20/ | ResNet-50/
CIFAR-10 | Imagewoof
configurations LUTs DSPs Acc. (%) Acc. (%)
FP32 58,420 320 91.85 57.57
ESM2(CFG5) + E6MS 42,640 0 91.04 59.79
ESM2(CEFG5) + Q8.13 43,471 0 90.95 10.92

=25% LUT count reduction + no DSPs compared to a FP32 design

mhigher system-level LUT count for fixed point configuration:
« downstream interconnect + buffering logic for wider accum. output

mfurther investigation needed on accumulation techniques at MAC and system level (e.g. [1])
mfixed-point accumulator more sensitive to DNN model size

[1] An FPGA-Specific Approach to Floating-Point Accumulation and Sum-Of-Products, de Dinechin et al., FPT 2008

Training Results

Full MAC configuration: system-level area and test accuracy

ResNet-20/ | ResNet-50/
CIFAR-10 | Imagewoof
configurations LUTs DSPs Acc. (%) Acc. (%)
FP32 58,420 320 91.85 57.57
ESM2(CFG5) + E6MS 42,640 0 91.04 59.79
ESM2(CEFG5) + Q8.13 43,471 0 90.95 10.92
- ESM2(CFG5) + Q11.13 44,876 0 n/a. 59.38

=25% LUT count reduction + no DSPs compared to a FP32 design

mhigher system-level LUT count for fixed point configuration:
« downstream interconnect + buffering logic for wider accum. output

mfurther investigation needed on accumulation techniques at MAC and system level (e.g. [1])

= fixed-point accumulator more sensitive to DNN model size

[1] An FPGA-Specific Approach to Floating-Point Accumulation and Sum-Of-Products, de Dinechin et al., FPT 2008

Summary

=Archimedes-MPO & mptorch: study resource-accuracy tradeoffs with custom arithmetic
during DNN training
mnarrow floating-point formats seem safe in GEMM multipliers

= save multiplier area by modifying exceptional value support [1, 2]

mfixed-point accumulators are interesting (e.g. small area), but can require significant extra logic

[1] FP8 Formats for Deep Learning, Micikevicius et al., arXiv:2209.02915, 2022
[2] 8-bit Numerical Formats for Deep Neural Networks, Noune et al., arXiv:2206.02915, 2022

Summary

=Archimedes-MPO & mptorch: study resource-accuracy tradeoffs with custom arithmetic
during DNN training
mnarrow floating-point formats seem safe in GEMM multipliers

= save multiplier area by modifying exceptional value support [1, 2]

mfixed-point accumulators are interesting (e.g. small area), but can require significant extra logic

Limitations & ongoing/future work

o small number of models and datasets
o explore/compare with other data formats besides floating-point & fixed-point
e accumulation architecture exploration at the MAC and system level
e arithmetic aspects of different training algorithms
e error analysis-guided choice of number formats during training
e ASSEess resource-accuracy impact of other training operations:
e parameter updates
o other layer types (e.g. normalization)
e activation function evaluation

[1] FP8 Formats for Deep Learning, Micikevicius et al., arXiv:2209.02915, 2022
[2] 8-bit Numerical Formats for Deep Neural Networks, Noune et al., arXiv:2206.02915, 2022

Summary

=Archimedes-MPO & mptorch: study resource-accuracy tradeoffs with custom arithmetic
during DNN training
mnarrow floating-point formats seem safe in GEMM multipliers

= save multiplier area by modifying exceptional value support [1, 2]

mfixed-point accumulators are interesting (e.g. small area), but can require significant extra logic

Limitations & ongoing/future work

o small number of models and datasets
o explore/compare with other data formats besides floating-point & fixed-point
e accumulation architecture exploration at the MAC and system level
e arithmetic aspects of different training algorithms
e error analysis-guided choice of number formats during training
e ASSEess resource-accuracy impact of other training operations:
e parameter updates
o other layer types (e.g. normalization)

e activation function evaluation Thank Youl! Questions?

[1] FP8 Formats for Deep Learning, Micikevicius et al., arXiv:2209.02915, 2022
[2] 8-bit Numerical Formats for Deep Neural Networks, Noune et al., arXiv:2206.02915, 2022

