
Exploring Low-Precision Formats
in MAC Units for DNN TrainingLignes connectiques de processeur.

Bouclier de protection (résistance).
Masque (visage) celtique.

Typographie moderne.

PROP. 5

joint work with Olivier Sentieys, Sami Ben Ali,
Mariko Tatsumi, Guy Lemieux

Silviu Filip
Inria Rennes
silviu.filip@inria.fr

Overview

• Introduction

• Motivation: energy-efficient ML & the need for compression

• Quantization & low-precision computations for DNN training

• Quantization for training acceleration

• Custom precision simulation tools for DNN training acceleration

• Mixed precision MAC design space exploration for DNN training

• Summary & conclusions

Deep neural networks are growing fast

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030
100

102

104

106

108

1010

1012

1014

W
ei

g
h
t

p
ar

am
et

er
co

u
n
t

1943: First NN
(N ' 10)

1988: NetTalk
(N ' 2 · 104)

2009: Hinton’s
Deep Belief Net
(N ' 107)

2013: Google/Y!
(N ' 109)

2017: Very large
NNs (N ' 137 · 109)

2021: Extremely large
NNs (N ' 1.6 · 1012)

Deep neural networks are growing fast

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030
100

102

104

106

108

1010

1012

1014

W
ei

g
h
t

p
ar

am
et

er
co

u
n
t

1943: First NN
(N ' 10)

1988: NetTalk
(N ' 2 · 104)

2009: Hinton’s
Deep Belief Net
(N ' 107)

2013: Google/Y!
(N ' 109)

2017: Very large
NNs (N ' 137 · 109)

2021: Extremely large
NNs (N ' 1.6 · 1012)

2025: N = 1014

The data movement bottleneck

Inference outputNew input data
x fW (x)

W[1]

W[2] W[3]

W[4]

W[5]

a[1]

a[2]
a[3]

a[4]

a[5]

Memory Compute
units

Data movement
• move input data & model from memory

to compute units
• send partial results back to memory

Computations
• vector/matrix manipulations
• done on CPU, GPU, DSP, or

custom accelerators (e.g.,
FPGA, ASIC)

Trained DNN model

The data movement bottleneck

Inference outputTraining data
x fW (x)

Memory Compute
units

Data movement
• move input data & model from memory

to compute units
• send partial results back to memory

Computations
• vector/matrix manipulations
• done on CPU, GPU, DSP, or

custom accelerators (e.g.,
FPGA, ASIC)

Training a DNN model

Expected output
y Loss

ℒ (fW (x), y)
W[1]

W[2] W[3]

W[4]

W[5]

a[1]

a[2]
a[3]

a[4]

a[5]

The data movement bottleneck

Inference output

fW (x)

∂ℒ/∂W[5]

∂ℒ/∂a[5]

Memory Compute
units

Data movement
• move input data & model from memory

to compute units
• send partial results back to memory

Computations
• vector/matrix manipulations
• done on CPU, GPU, DSP, or

custom accelerators (e.g.,
FPGA, ASIC)

Training a DNN model

Expected output
y Loss

∂ℒ/∂a[4]

∂ℒ/∂a[3]

∂ℒ/∂a[2]

∂ℒ/∂a[1]

∂ℒ/∂W[4]

∂ℒ/∂W[3]∂ℒ/∂W[2]

∂ℒ/∂W[1]

ℒ (fW (x), y)

What is DNN quantization?

Image source: Here’s why quantization matters for AI, Jilei Hou, 2019

A visual quantization example:
• using fewer bits per pixel in an image

https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai

What is DNN quantization?

Image source: Here’s why quantization matters for AI, Jilei Hou, 2019

A visual quantization example:
• using fewer bits per pixel in an image

W[1]

W[2] W[3]

W[4]

W[5]

a[1]

a[2]
a[3]

a[4]

a[5]

During inference (i.e., for a trained network):

https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai

What is DNN quantization?

Image source: Here’s why quantization matters for AI, Jilei Hou, 2019

A visual quantization example:
• using fewer bits per pixel in an image

W[1]
q

W[2]
q W[3]

q
W[4]

q W[5]
q

a[1]

a[2]
a[3]

a[4]

a[5]

During inference (i.e., for a trained network):
• store network parameters in low precision

https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai

What is DNN quantization?

Image source: Here’s why quantization matters for AI, Jilei Hou, 2019

A visual quantization example:
• using fewer bits per pixel in an image

a[1]
q

a[2]
q

a[3]
q

a[4]
q

a[5]
q

During inference (i.e., for a trained network):
• store network parameters in low precision
• store/compute intermediate signals in low precision

W[1]
q

W[2]
q W[3]

q
W[4]

q W[5]
q

https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai

What is DNN quantization?

Image source: Here’s why quantization matters for AI, Jilei Hou, 2019

A visual quantization example:
• using fewer bits per pixel in an image

During inference (i.e., for a trained network):
• store network parameters in low precision
• store/compute intermediate signals in low precision

During training:

∂ℒ
∂W[1]

∂ℒ
∂W[2]

∂ℒ
∂a[1]

∂ℒ
∂W[3] ∂ℒ

∂W[4]
∂ℒ

∂W[5]

∂ℒ
∂a[2]

∂ℒ
∂a[3]

∂ℒ
∂a[4]

∂ℒ
∂a[5]

https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai

What is DNN quantization?

Image source: Here’s why quantization matters for AI, Jilei Hou, 2019

A visual quantization example:
• using fewer bits per pixel in an image

During inference (i.e., for a trained network):
• store network parameters in low precision
• store/compute intermediate signals in low precision

During training:
• store/compute back propagated gradients in low precision

(∂ℒ
∂W[1]

q)
q

(∂ℒ
∂W[2]

q)
q

(∂ℒ
∂W[3]

q)
q (∂ℒ

∂W[4]
q)

q (∂ℒ
∂W[5]

q)
q

(∂ℒ
∂a[1]

q)
q

(∂ℒ
∂a[2]

q)
q

(∂ℒ
∂a[3]

q)
q

(∂ℒ
∂a[4]

q)
q

(∂ℒ
∂a[5]

q)
q

https://www.qualcomm.com/news/onq/2019/03/heres-why-quantization-matters-ai

Quantization effects: the good

Memory access
energy (pJ)

Cache (64-bit)

8KB 10

32KB 20

1MB 100

DRAM 1300-
2600

Up to 4x
energy

reduction

MULT energy (pJ)

INT8 INT32 FP16 FP32

0.2 3.1 1.1 3.7

18.5x energy reduction

MULT area (μm2)

INT8 INT32 FP16 FP32

282 3495 1640 7700

27x area reduction

ADD energy (pJ)

INT8 INT32 FP16 FP32

0.03 0.1 0.4 0.9

30x energy reduction

ADD area (μm2)

INT8 INT32 FP16 FP32

36 137 1360 4184

116x area reduction

Memory usage Power consumption Latency Silicon area

storage needed for weights and
and activations is proportional to

the bit width used

energy is significantly reduced for
both computations and memory

accesses

less memory access and simpler
computations lead to faster runtimes

and reduced latency

8-bit arithmetic and below
requires less area than larger
bit width FP compute units

Sources: Mark Horowitz (Stanford), energy based on ASIC, area based on TSMC 45nm process
 Wikimedia Commons

01010101

01010101

01010101

01010101

01010101

FP32
111.125

INT8
111

Why quantization for training?
➡quantization for inference acceleration is popular & widely studied in recent years

➡quantization for training acceleration is less studied, but still important

Why quantization for training?
➡quantization for inference acceleration is popular & widely studied in recent years

➡quantization for training acceleration is less studied, but still important

Why?
• SOTA models tend to get bigger & bigger,
• requiring more time & memory to train
• growing need & interest for edge/on-site
 learning

Model Hardware Power (W) Hours

Transformerbase P100x8 1415.78 12

Transformerbig P100x8 1515.43 84

ELMo P100x3 517.66 336

BERTbase V100x64 12041.51 79

BERTbase TPUv2x64 N/A 96

NAS P100x8 1515.43 274120

NAS TPUv2x1 N/A 32623

GTP-2 TPUv2x32 N/A 168

Estimated cost of training recent NLP models (adapted from [1])

[1] Energy and Policy Considerations for Deep Learning in NLP, Strubell et al., arXiv:1906.02243, 2019

Why is training expensive?
➡during inference/forward path, we need to compute activations ℒ

ℒ(a[N], y)

a[N]

w[k+1]

a[k+1]

fk(a[k], w[k])

x y

a[k]

fk+1(a[k+1], w[k+1])

w[k−1]

fk−1(a[k−1], w[k−1])

w[k]

Why is training expensive?
➡during inference/forward path, we need to compute activations

➡during training (backward path), we also need gradients:
• with respect to the activations (the vectors)
• with respect to the parameters (the vectors)

a[k]

w[k]

∂ℒ/∂a[N]

∂ℒ/∂w[k+1]

∂ℒ/∂a[k+1]

× ∂fk /∂w[k]

∂ℒ/∂x ∂ℒ/∂y

× ∂fk+1/∂w[k+1]

∂ℒ/∂y

× ∂fk+1/∂a[k+1]

∂ℒ/∂w[k]

∂ℒ/∂a[k]

∂ℒ/∂w[k−1]
× ∂fk−1/∂w[k−1]

× ∂fk−1/∂a[k−1]

× ∂fk /∂a[k]

1

W(t+1) = W(t) − αt
∂ℒ

∂W(t)

Why is training expensive?
➡during inference/forward path, we need to compute activations

➡during training (backward path), we also need gradients:
• with respect to the activations (the vectors)
• with respect to the parameters (the vectors)

a[k]

w[k]

∂ℒ/∂a[N]

∂ℒ/∂w[k+1]

∂ℒ/∂a[k+1]

× ∂fk /∂w[k]

∂ℒ/∂x ∂ℒ/∂y

× ∂fk+1/∂w[k+1]

∂ℒ/∂y

× ∂fk+1/∂a[k+1]

∂ℒ/∂w[k]

∂ℒ/∂a[k]

∂ℒ/∂w[k−1]
× ∂fk−1/∂w[k−1]

× ∂fk−1/∂a[k−1]

× ∂fk /∂a[k]

1

➡it is hard to reduce precision of operations during training
Why?

• vanishing & exploding gradients during back propagation

• small updates to parameters, i.e., w ≫ ∂ℒ/∂w

➡a (possibly) large dynamic range is needed
➡use floating-point arithmetic

W(t+1) = W(t) − αt
∂ℒ

∂W(t)

Floating-point formats

x = (−1)S × 1.M(2) × 2E−127

sign exponent (8 bits) mantissa (23 bits)

31 30 23 22 0

0 011 1 1 1 1

x = (−1)0 × 1.01(2) × 2124−127 = 1.25 × 2−3 = 0.15625

➡the de facto family of formats for working with real numbers in the digital world

Example: The IEEE-754 float32 format

bias (integer constant offset)

Floating-point formats

Format Mantissa
size

Exponent
size

Bias Range Unit
roundoff

fp128

fp64

fp32

fp16

tfloat32 (tf32)

bfloat16 (bf16)

fp8

11

8

52

23

10

10

7

3
2

4
5

8

8

5

10±308 1 × 10−16

10±38 6 × 10−8

10±5 5 × 10−4

10±38 5 × 10−4

10±38 4 × 10−3

10±5
10±2 6 × 10−2

1 × 10−1

10±4932112 15 1 × 10−3416383

1023

127

15

127

127

7
15

➡several formats are used in practice:

established IEEE-754
formats

emerging formats

➡FP32 is the workhorse format for training AI models

➡there are several emerging FP formats for AI acceleration

Floating-point formats

Range
exponent

Precision
mantissasi

gn

FP32

TF32

FP16

BF16

FP8
(E5M2)
FP8
(E4M3)

e8

e8

e8

e5

e5

e4

m23

m10

m10

m7

m2

m3

Peak performance (TFLOPS)
Device Year fp64 fp32 tfloat32 fp16 bfloat16 fp8

P100 2016 5 9 - 19 - -

V100 2017-2019 8 16 - 125 - -

A100 2020-2021 19 19 156 312 312 -

H100 2022 48 48 400 800 800 1600

➡they offer various tradeoffs in terms of range, precision & performance

FP performance numbers for recent NVIDIA GPU architectures

Floating-point formats

x = (−1)S × 1.M(2) × 2E−127

sign exponent (8 bits) mantissa (23 bits)

31 30 23 22 0

0 011 1 1 1 1

x = (−1)0 × 1.01(2) × 2124−127 = 1.25 × 2−3 = 0.15625

bias (integer constant offset)

➡exponent encoding is a offset-binary representation
• 01(H) 7F(H)

• FE(H) 7F(H)

Emin = − = − 126
Emax = − = 127 Equation

00(H) subnormal
value

01(H),…,FE(H) normal value

FF(H) NaN

±0

M = 0 M ≠ 0E

±∞

(−1)S × 0.M(2) × 2−126

(−1)S × 1.M(2) × 2E−127

When, where and how can we use smaller number formats during DNN training?

Floating-point formats

x = (−1)S × 1.M(2) × 2E−127

sign exponent (8 bits) mantissa (23 bits)

31 30 23 22 0

0 011 1 1 1 1

x = (−1)0 × 1.01(2) × 2124−127 = 1.25 × 2−3 = 0.15625

bias (integer constant offset)

➡exponent encoding is a offset-binary representation
• 01(H) 7F(H)

• FE(H) 7F(H)

Emin = − = − 126
Emax = − = 127 Equation

00(H) subnormal
value

01(H),…,FE(H) normal value

FF(H) NaN

±0

M = 0 M ≠ 0E

±∞

(−1)S × 0.M(2) × 2−126

(−1)S × 1.M(2) × 2E−127

When, where and how can we use smaller number formats during DNN training?

Training acceleration landscape
➡SOTA training acceleration methods are based on mixed precision computing
Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

Training acceleration landscape
➡SOTA training acceleration methods are based on mixed precision computing

1. Keep parameters in HP

Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

w(t)

Training acceleration landscape
➡SOTA training acceleration methods are based on mixed precision computing

Quantizer

ŵ(t)
FWDa a

BWD-Activ
ŵ(t)∂ℒ/∂a

BWD-Weight
a

∂ℒ/∂ŵ(t) ∂ℒ/∂a

1. Keep parameters in HP

2. Make LP copy of parameters and
FWD/BWD-propagate in LP

Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

𝒬w

w(t)

∂ℒ/∂a

Training acceleration landscape
➡SOTA training acceleration methods are based on mixed precision computing

Quantizer

ŵ(t)
FWDa a

BWD-Activ
ŵ(t)∂ℒ/∂a

BWD-Weight
a

∂ℒ/∂ŵ(t) ∂ℒ/∂a

Weight
Update

1. Keep parameters in HP

2. Make LP copy of parameters and
FWD/BWD-propagate in LP

3. Do parameter update in HP

Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

𝒬w

w(t) w(t+1)

➡most compute happens in FWD/BWD-part (GEMM calls
 for fully connected and convolutional layers)

∂ℒ/∂a

Training acceleration landscape
➡SOTA training acceleration methods are based on mixed precision computing
Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

➡some notable examples:
• 32-bit (fp32) + 16-bit (fp16/bfloat16) arithmetic: on
• NVIDIA GPUs (NVIDIA AMP) & Google TPUs [1, 2]
• sub 16-bit & 8-bit training methods: research work [3-7]

[1] Mixed Precision Training, Micikevicius et al., ICLR 2018
[2] A Study of bfloat16 for Deep Learning Training, Kalamkar et al.,
[3] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[4] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020
[5] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[6] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[7] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Quantizer

ŵ(t)
FWDa a

BWD-Activ
ŵ(t)∂ℒ/∂a

BWD-Weight
a

∂ℒ/∂ŵ(t) ∂ℒ/∂a

Weight
Update

w(t) w(t+1)

1. Keep parameters in HP

2. Make LP copy of parameters and
FWD/BWD-propagate in LP

3. Do parameter update in HP

𝒬w

➡most compute happens in FWD/BWD-part (GEMM calls
 for fully connected and convolutional layers)

∂ℒ/∂a

An overview of recent results in MP training

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Quantization
Scheme

Formats ((Exponent, Mantissa) / Width) Top-1 Accuracy

w GEMM
Input x

BN
Input

x

dw da Acc. FP32 Proposed

SWALP [1] 8 8 N/A 8 8 32 70.3 65.8

S2FP8 [3] (5,2)/(8,23) (5,2) N/A (5,2) (5,2) (8,23) 70.3 69.6

HFP8 [2] (4,3) (4,3) (6,9) (6,9) (5,2) (6,9) 69.4 69.4

BM8 [4] (2,5) (2,5) 31 (6,9) (4,3) 31 69.7 69.8

FP8-SEB [5] (4,3) (4,3) (4,3) (4,3) (4,3) (8,23) 69.7 69.0

FP134 [6] (3,4) (3,4) (3,4) (3,4) (3,4) (8,23) 69.8 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.
Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

An overview of recent results in MP training

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Quantization
Scheme

Formats ((Exponent, Mantissa) / Width) Top-1 Accuracy

w GEMM
Input x

BN
Input

x

dw da Acc. FP32 Proposed

SWALP [1] 8 8 N/A 8 8 32 70.3 65.8

S2FP8 [3] (5,2)/(8,23) (5,2) N/A (5,2) (5,2) (8,23) 70.3 69.6

HFP8 [2] (4,3) (4,3) (6,9) (6,9) (5,2) (6,9) 69.4 69.4

BM8 [4] (2,5) (2,5) 31 (6,9) (4,3) 31 69.7 69.8

FP8-SEB [5] (4,3) (4,3) (4,3) (4,3) (4,3) (8,23) 69.7 69.0

FP134 [6] (3,4) (3,4) (3,4) (3,4) (3,4) (8,23) 69.8 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.
Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

Some notable ideas:
➡ use of a shared exponent bias/scaling factor
➡ at the tensor or block level or other similar tensor statistics

Why?
• shifts dynamic range at runtime, following the
• distribution of the data (with a small overhead)

An overview of recent results in MP training

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Quantization
Scheme

Formats ((Exponent, Mantissa) / Width) Top-1 Accuracy

w GEMM
Input x

BN
Input

x

dw da Acc. FP32 Proposed

SWALP [1] 8 8 N/A 8 8 32 70.3 65.8

S2FP8 [3] (5,2)/(8,23) (5,2) N/A (5,2) (5,2) (8,23) 70.3 69.6

HFP8 [2] (4,3) (4,3) (6,9) (6,9) (5,2) (6,9) 69.4 69.4

BM8 [4] (2,5) (2,5) 31 (6,9) (4,3) 31 69.7 69.8

FP8-SEB [5] (4,3) (4,3) (4,3) (4,3) (4,3) (8,23) 69.7 69.0

FP134 [6] (3,4) (3,4) (3,4) (3,4) (3,4) (8,23) 69.8 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.
Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

Some notable ideas:
➡ use of a shared exponent bias/scaling factor
➡ at the tensor or block level or other similar tensor statistics

Why?

➡ scale the loss function before back propagation + rescale
➡ gradients before parameter update

Why?
• shifts gradients in a representable range when using
• low precision (i.e., to avoid under/overflows)

• shifts dynamic range at runtime, following the
• distribution of the data (with a small overhead)

ℒ → ℒscaled = 2s ⋅ ℒ

∂ℒ/∂w = 2−s ⋅ ∂ℒscaled/∂w

An overview of recent results in MP training

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Quantization
Scheme

Formats ((Exponent, Mantissa) / Width) Top-1 Accuracy

w GEMM
Input x

BN
Input

x

dw da Acc. FP32 Proposed

SWALP [1] 8 8 N/A 8 8 32 70.3 65.8

S2FP8 [3] (5,2)/(8,23) (5,2) N/A (5,2) (5,2) (8,23) 70.3 69.6

HFP8 [2] (4,3) (4,3) (6,9) (6,9) (5,2) (6,9) 69.4 69.4

BM8 [4] (2,5) (2,5) 31 (6,9) (4,3) 31 69.7 69.8

FP8-SEB [5] (4,3) (4,3) (4,3) (4,3) (4,3) (8,23) 69.7 69.0

FP134 [6] (3,4) (3,4) (3,4) (3,4) (3,4) (8,23) 69.8 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.
Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

Some notable ideas:
➡ rounding used in the quantizer:
➡ stochastic [1] & hysteresis [6]

Why?
• stochastic rounding can recapture information that is
• discarded when bits are rounded off
• hysteresis rounding smooths fluctuations in param.
• updates & stabilizes training

xdown xup

x

pdown =
x − xdown

xup − xdown
pup =

xup − x
xup − xdown

An overview of recent results in MP training

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Quantization
Scheme

Formats ((Exponent, Mantissa) / Width) Top-1 Accuracy

w GEMM
Input x

BN
Input

x

dw da Acc. FP32 Proposed

SWALP [1] 8 8 N/A 8 8 32 70.3 65.8

S2FP8 [3] (5,2)/(8,23) (5,2) N/A (5,2) (5,2) (8,23) 70.3 69.6

HFP8 [2] (4,3) (4,3) (6,9) (6,9) (5,2) (6,9) 69.4 69.4

BM8 [4] (2,5) (2,5) 31 (6,9) (4,3) 31 69.7 69.8

FP8-SEB [5] (4,3) (4,3) (4,3) (4,3) (4,3) (8,23) 69.7 69.0

FP134 [6] (3,4) (3,4) (3,4) (3,4) (3,4) (8,23) 69.8 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.
Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

Some notable ideas:
➡ rounding used in the quantizer:
➡ stochastic [1] & hysteresis [6]

Why?
• stochastic rounding can recapture information that is
• discarded when bits are rounded off
• hysteresis rounding seems to smooth fluctuations in
• param. updates & stabilizes training

𝒬(t) (w(t)) = {⌊w(t)⌋ if wt > 𝒬(t−1) (w(t−1))
⌈w(t)⌉ if wt ⩽ 𝒬(t−1) (w(t−1))

An overview of recent results in MP training

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Quantization
Scheme

Formats ((Exponent, Mantissa) / Width) Top-1 Accuracy

w GEMM
Input x

BN
Input

x

dw da Acc. FP32 Proposed

SWALP [1] 8 8 N/A 8 8 32 70.3 65.8

S2FP8 [3] (5,2)/(8,23) (5,2) N/A (5,2) (5,2) (8,23) 70.3 69.6

HFP8 [2] (4,3) (4,3) (6,9) (6,9) (5,2) (6,9) 69.4 69.4

BM8 [4] (2,5) (2,5) 31 (6,9) (4,3) 31 69.7 69.8

FP8-SEB [5] (4,3) (4,3) (4,3) (4,3) (4,3) (8,23) 69.7 69.0

FP134 [6] (3,4) (3,4) (3,4) (3,4) (3,4) (8,23) 69.8 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.
Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

Some notable ideas:
➡ rounding used in the quantizer:
➡ stochastic [1] & hysteresis [6]

Why?

➡ smart accumulator design (algorithmic/architectural) to
➡ optimize accuracy at low precision

• stochastic rounding can recapture information that is
• discarded when bits are rounded off
• hysteresis rounding seems to smooth fluctuations in
• param. updates & stabilizes training

An overview of recent results in MP training

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Quantization
Scheme

Formats ((Exponent, Mantissa) / Width) Top-1 Accuracy

w GEMM
Input x

BN
Input

x

dw da Acc. FP32 Proposed

SWALP [1] 8 8 N/A 8 8 32 70.3 65.8

S2FP8 [3] (5,2)/(8,23) (5,2) N/A (5,2) (5,2) (8,23) 70.3 69.6

HFP8 [2] (4,3) (4,3) (6,9) (6,9) (5,2) (6,9) 69.4 69.4

BM8 [4] (2,5) (2,5) 31 (6,9) (4,3) 31 69.7 69.8

FP8-SEB [5] (4,3) (4,3) (4,3) (4,3) (4,3) (8,23) 69.7 69.0

FP134 [6] (3,4) (3,4) (3,4) (3,4) (3,4) (8,23) 69.8 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.
Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

Some notable ideas:
➡ rounding used in the quantizer:
➡ stochastic [1] & hysteresis [6]

Why?

➡ smart accumulator design (algorithmic/architectural) to
➡ optimize accuracy at low precision

• stochastic rounding can recapture information that is
• discarded when bits are rounded off
• hysteresis rounding seems to smooth fluctuations in
• param. updates & stabilizes training

Limitations:

➡ many approaches use coarse-grained simulation results

An overview of recent results in MP training

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Quantization
Scheme

Formats ((Exponent, Mantissa) / Width) Top-1 Accuracy

w GEMM
Input x

BN
Input

x

dw da Acc. FP32 Proposed

SWALP [1] 8 8 N/A 8 8 32 70.3 65.8

S2FP8 [3] (5,2)/(8,23) (5,2) N/A (5,2) (5,2) (8,23) 70.3 69.6

HFP8 [2] (4,3) (4,3) (6,9) (6,9) (5,2) (6,9) 69.4 69.4

BM8 [4] (2,5) (2,5) 31 (6,9) (4,3) 31 69.7 69.8

FP8-SEB [5] (4,3) (4,3) (4,3) (4,3) (4,3) (8,23) 69.7 69.0

FP134 [6] (3,4) (3,4) (3,4) (3,4) (3,4) (8,23) 69.8 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.
Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

Some notable ideas:
➡ rounding used in the quantizer:
➡ stochastic [1] & hysteresis [6]

Why?

➡ smart accumulator design (algorithmic/architectural) to
➡ optimize accuracy at low precision

• stochastic rounding can recapture information that is
• discarded when bits are rounded off
• hysteresis rounding seems to smooth fluctuations in
• param. updates & stabilizes training

Limitations:

➡ many approaches use coarse-grained simulation results

➡ HW synthesis results are not that common (yet!)

An overview of recent results in MP training

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al.,ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Quantization
Scheme

Formats ((Exponent, Mantissa) / Width) Top-1 Accuracy

w GEMM
Input x

BN
Input

x

dw da Acc. FP32 Proposed

SWALP [1] 8 8 N/A 8 8 32 70.3 65.8

S2FP8 [3] (5,2)/(8,23) (5,2) N/A (5,2) (5,2) (8,23) 70.3 69.6

HFP8 [2] (4,3) (4,3) (6,9) (6,9) (5,2) (6,9) 69.4 69.4

BM8 [4] (2,5) (2,5) 31 (6,9) (4,3) 31 69.7 69.8

FP8-SEB [5] (4,3) (4,3) (4,3) (4,3) (4,3) (8,23) 69.7 69.0

FP134 [6] (3,4) (3,4) (3,4) (3,4) (3,4) (8,23) 69.8 69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration.
Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

Some notable ideas:
➡ rounding used in the quantizer:
➡ stochastic [1] & hysteresis [6]

Why?

➡ smart accumulator design (algorithmic/architectural) to
➡ optimize accuracy at low precision

• stochastic rounding can recapture information that is
• discarded when bits are rounded off
• hysteresis rounding seems to smooth fluctuations in
• param. updates & stabilizes training

Limitations:

➡ many approaches use coarse-grained simulation results

➡ HW synthesis results are not that common (yet!)

➡ accumulator results are usually in high precision

Simulation support for MP training
Features QPyTorch[1] TensorQuant [2] FASE [3] MPTorch [4] Archimedes-MPO [4, 5]

Fast ++ + + + +

Accurate — + + + +

Seamless — — + — —

Dynamic Libraries — — + — —

Independent — — + — —

Platforms CPU/GPU CPU/GPU CPU CPU/GPU/FPGA CPU/GPU/FPGA

[1] QPyTorch: A Low-Precision Arithmetic Simulation Framework, Zhang et al., arXiv:1910.04540, 2019
[2] TensorQuant — A Simulation Toolbox for Deep Neural Network Quantization, Loroch et al., arXiv:1710.05758, 2017
[3] FASE: A Fast, Accurate and Seamless Emulator for Custom Numerical Formats, Osorio et al., ISPASS 2022
[4] MPTorch and MPArchimedes: Open Source Frameworks to Explore Custom Mixed-Precision Operations for DNN Training on Edge Devices, Tatsumi et al., ROAD4NN 2021
[5] Mixing Low-Precision Formats in Multiply-Accumulate (MAC) Units for DNN Training, Tatsumi et al., FPT 2022

Simulation support for MP training

[1] QPyTorch: A Low-Precision Arithmetic Simulation Framework, Zhang et al., arXiv:1910.04540, 2019
[2] TensorQuant — A Simulation Toolbox for Deep Neural Network Quantization, Loroch et al., arXiv:1710.05758, 2017
[3] FASE: A Fast, Accurate and Seamless Emulator for Custom Numerical Formats, Osorio et al., ISPASS 2022
[4] MPTorch and MPArchimedes: Open Source Frameworks to Explore Custom Mixed-Precision Operations for DNN Training on Edge Devices, Tatsumi et al., ROAD4NN 2021
[5] Mixing Low-Precision Formats in Multiply-Accumulate (MAC) Units for DNN Training, Tatsumi et al., FPT 2022

MPTorch repository: https://github.com/mptorch/mptorch

Features QPyTorch[1] TensorQuant [2] FASE [3] MPTorch [4] Archimedes-MPO [4, 5]

Fast ++ + + + +

Accurate — + + + +

Seamless — — + — —

Dynamic Libraries — — + — —

Independent — — + — —

Platforms CPU/GPU CPU/GPU CPU CPU/GPU/FPGA CPU/GPU/FPGA

Archimedes-MPO & MPTorch goals

➡vehicles for producing:
• mixed/low precision DNN training accelerator hardware prototypes
• explore novel algorithms for mixed precision DNN training

Work in progress

Starting topic: explore multiply-accumulate (MAC) unit design space

Archimedes-MPO Overview
➡ extends TinyDNN [1] C++ deep learning library:

• support for custom precision fixed-point and floating-point
• GPU & FPGA versions with custom GEMM kernels

+×float2lp

float2lp

lp2float
FP32

LP+

LP+LP×

LP×

Weight Update
(FP32)Weight (FP32)

+×float2lp

float2lp

lp2float
FP32

LP+

LP+LP×

LP×

+×float2lp

float2lp

lp2float
FP32

LP+

LP+LP×

LP×

FPGA GEMM Kernel

FPGA GEMM Kernel

FPGA GEMM Kernel

FP32

FP32

∂ℒ/∂a[k+1]

∂ℒ/∂a[k]

a[k] a[k+1]

∂ℒ/∂w

Forward Path

Backward Path➡ GEMM kernel on FPGA:
• adds custom precision support to prior work [2]:

‣ data type converter (FP32 LP)
‣ custom multiplier and adder (MAC) in HLS (Vitis HLS 2020.2)

• parametrizable architecture:

‣ currently using 16 4 systolic array (@ 280MHz)
• one HW kernel is synthesized
• Xilinx ZCU104 development board

↔

×

➡ GEMM kernel on GPU:
• bit-accurate with the FPGA version
• more convenient to deploy & test

[1] https://github.com/tiny-dnn/tiny-dnn
[2] Flexible Communication Avoiding Matrix Multiplication on FPGA with HLS, de Fine Licht et al., FPGA 2020

MACMACMACMAC

PE 16

MACMACMACMAC

PE 15

MACMACMACMAC

PE 1

⋮

Archimedes-MPO FPGA Block Diagram

Read
+

FP32toLPFP

A

Read
+

FP32toLPFP

B

FP32toLPFP
+

Write C

DDR
Controller

TinyDNN

PetaLinux

core 0 core 0 core 0 core 0

ARM

PS DDR4
(2GB)

Zynq UltraScale+MPSoC

GEMM Kernel
(FPGA) Host

MAC Design Space Exploration
➡start by looking at the multiplier and accumulator separately

I/O precision LUTs DSPs
FP32 (no DSP) 987 0

FP32 374 2
FP16/bfloat16 195/180 1
E6M3 (CFG-1) 115 0
E5M3 (CFG-1) 86 0
E4M3 (CFG-1) 78 0

Q16.16 279 4
Q8.8 106 1
Q7.7 93 1
Q6.6 81 1

Multiplier
➡floating-point:

• limit input mantissa size to 3 bits use LUTs
➡for multiplying operand mantissas
• basic configuration (CFG-1):

‣ support for NaNs/
‣ round to nearest, subnormals

→

±∞

➡fixed-point:
• integer multiplier with output rounded to input data type
• uses DSP blocks because required fixed-point formats are wider

MAC Design Space Exploration
➡start by looking at the multiplier and accumulator separately

I/O precision LUTs DSPs
FP32 (no DSP) 987 0

FP32 374 2
FP16/bfloat16 195/180 1
E6M3 (CFG-1) 115 0
E5M3 (CFG-1) 86 0
E4M3 (CFG-1) 78 0

Q16.16 279 4
Q8.8 106 1
Q7.7 93 1
Q6.6 81 1

Multiplier
➡floating-point:

• limit input mantissa size to 3 bits use LUTs
➡for multiplying operand mantissas
• basic configuration (CFG-1):

‣ support for NaNs/
‣ round to nearest, subnormals

→

±∞

➡fixed-point:
• integer multiplier with output rounded to input data type
• uses DSP blocks because required fixed-point formats are wider

➡better resource usage for small floating-point vs fixed-point in training accuracy results (later)

MAC Design Space Exploration
➡start by looking at the multiplier and accumulator separately

Multiplier
➡decrease resource use by gradually removing ancillary support:
CFG-2: subnormal output removal

• information loss + LUT reduction
CFG-3: output rounding removal

• restores information + output length increases

CFG-4: NaN encoding removal
• NaN values become normal values

• remapping to all 1 mantissa±∞

CFG-5 & CFG-6: alternative subnormal inputs
• CFG-5 treats subnormals as normal values
• CFG-6 truncates all subnormals to zero Area of floating-point multiplier variants

MAC Design Space Exploration
➡start by looking at the multiplier and accumulator separately

Multiplier
➡decrease resource use by gradually removing ancillary support:
CFG-2: subnormal output removal

• information loss + LUT reduction
CFG-3: output rounding removal

• restores information + output length increases

CFG-4: NaN encoding removal
• NaN values become normal values

• remapping to all 1 mantissa±∞

CFG-5 & CFG-6: alternative subnormal inputs
• CFG-5 treats subnormals as normal values
• CFG-6 truncates all subnormals to zero Area of floating-point multiplier variants

➡over 50% area reduction going from CFG-1 to CFG-5/CFG-6
➡prefer CFG-5 do to increased representation range

MAC Design Space Exploration
➡start by looking at the multiplier and accumulator separately

Multiplier
➡decrease resource use by gradually removing ancillary support:
CFG-2: subnormal output removal

• information loss + LUT reduction
CFG-3: output rounding removal

• restores information + output length increases

CFG-4: NaN encoding removal
• NaN values become normal values

• remapping to all 1 mantissa±∞

CFG-5 & CFG-6: alternative subnormal inputs
• CFG-5 treats subnormals as normal values
• CFG-6 truncates all subnormals to zero

➡over 50% area reduction going from CFG-1 to CFG-5/CFG-6
➡prefer CFG-5 due to increased representation range

Alternative encoding schemes for E5M2

MAC Design Space Exploration
➡start by looking at the multiplier and accumulator separately

Accumulator
➡look at low-precision floating-point and fixed-point designs:

• fixed-point: saturation logic
• floating-point: subnormals, swapping, operand shifting, extra bits

Area of accumulator and data converter

MAC Design Space Exploration
➡start by looking at the multiplier and accumulator separately

Accumulator
➡look at low-precision floating-point and fixed-point designs:

• fixed-point: saturation logic
• floating-point: subnormals, swapping, operand shifting, extra bits

➡fixed-point designs more efficient
➡(NO I/O alignment shifters or rounding)

Area of accumulator and data converter

MAC Design Space Exploration
➡start by looking at the multiplier and accumulator separately

Accumulator
➡look at low-precision floating-point and fixed-point designs:

• fixed-point: saturation logic
• floating-point: subnormals, swapping, operand shifting, extra bits

➡fixed-point designs more efficient
➡(NO I/O alignment shifters or rounding)

Full MAC unit
➡floating-point multiplier + fixed-point acc. ?

• requires fixed-to-float converters (data shifters)

Area of accumulator and data converter

MAC Design Space Exploration
➡start by looking at the multiplier and accumulator separately

Accumulator
➡look at low-precision floating-point and fixed-point designs:

• fixed-point: saturation logic
• floating-point: subnormals, swapping, operand shifting, extra bits

➡fixed-point designs more efficient
➡(NO I/O alignment shifters or rounding)

Full MAC unit
➡floating-point multiplier + fixed-point acc. ?

• requires float-to-fixed converters (data shifters)
• type conversion cannot be ignored

Area of accumulator and data converter

Training Results

➡image classification tasks using:
• ResNet-20 [1] & VGG16 [2] CNN architectures with CIFAR-10 dataset
• ResNet-50 [1] CNN on subset of the ImageNet dataset (ImageWoof)

Experimental setting

➡optimizer (SGD + momentum) and hyperparam. & preprocessing
 based on the original papers

[1] Deep Residual Learning for Image Recognition, He et al., CVPR 2016
[2] Very Deep Convolutional Neural Networks for Large-Scale Image Recognition, Simonyan et al., ICLR 2015
[3] Mixed Precision Training, Micikevicius et al., ICLR 2018

➡use adaptive loss scaling [3]

Training Results

➡image classification tasks using:
• ResNet-20 [1] & VGG16 [2] CNN architectures with CIFAR-10 dataset
• ResNet-50 [1] CNN on subset of the ImageNet dataset (ImageWoof)

Experimental setting

➡optimizer (SGD + momentum) and hyperparam. & preprocessing
 based on the original papers

[1] Deep Residual Learning for Image Recognition, He et al., CVPR 2016
[2] Very Deep Convolutional Neural Networks for Large-Scale Image Recognition, Simonyan et al., ICLR 2015
[3] Mixed Precision Training, Micikevicius et al., ICLR 2018

➡use adaptive loss scaling [3]

Training Results
Impact of loss scaling

Loss scaling impact on test accuracy when using E4 and E5 multipliers

➡loss scaling important to keep gradients in representable range when using small formats
➡similar trends when varying the format/precision in the accumulators

Training Results
Impact of loss scaling

Loss scaling impact on test accuracy when using E4 and E5 multipliers

➡loss scaling important to keep gradients in representable range when using small formats
➡similar trends when varying the format/precision in the accumulators
➡E4M2 looks like a good place to start for these examples

Training Results
Multiplier variants

Multiplier variant impact on test accuracy

Training Results
Multiplier variants

Multiplier variant impact on test accuracy

➡removing subnormal output support (CFG-2) hurts accuracy significantly

Training Results
Multiplier variants

Multiplier variant impact on test accuracy

➡removing subnormal output support (CFG-2) hurts accuracy significantly
➡output rounding removal (CFG-3), NaN encoding removal (CFG-4),
➡alternative subnormal inputs (CFG-5) restores accuracy

Training Results
Accumulator variants: floating-point

Floating-Point Accumulator impact on test accuracy

➡accuracy more sensitive to exponent width than mantissa width (even with loss scaling)

Training Results
Accumulator variants: floating-point

Floating-Point Accumulator impact on test accuracy

➡accuracy more sensitive to exponent width than mantissa width (even with loss scaling)
➡E5M5 seems like a good choice
➡investigating accumulation strategies might help

Training Results
Accumulator variants: fixed-point

Fixed-Point Accumulator (Q8.f) impact on test accuracy

➡larger format needed: Q8.12

Training Results
Full MAC configuration

➡start with E4M2 (CFG-5) multiplier + E5M5/Q8.12 (green/orange) accumulator

MAC configurations impact on test accuracy (ResNet20 + CIFAR-10)

Training Results
Full MAC configuration

MAC configurations impact on test accuracy (ResNet20 + CIFAR-10)

➡start with E4M2 (CFG-5) multiplier + E5M5/Q8.12 (green/orange) accumulator
➡increasing floating-point multiplier input format to E5M2 (CFG-5) (blue)
➡restores accuracy in all-FP MAC, but not for fixed-point accumulator

Training Results
Full MAC configuration

MAC configurations impact on test accuracy (ResNet20 + CIFAR-10)

➡start with E4M2 (CFG-5) multiplier + E5M5/Q8.12 (green/orange) accumulator
➡increasing floating-point multiplier input format to E5M2 (CFG-5) (blue)
➡restores accuracy in all-FP MAC, but not for fixed-point accumulator
➡going to Q8.13 (red) accumulator restores mixed float/fixed MAC accuracy

Training Results

➡25% LUT count reduction + no DSPs compared to a FP32 design
➡higher system-level LUT count for fixed point configuration:

• downstream interconnect + buffering logic for wider accum. output
➡further investigation needed on accumulation techniques at MAC and system level (e.g. [1])

Full MAC configuration: system-level area and test accuracy

[1] An FPGA-Specific Approach to Floating-Point Accumulation and Sum-Of-Products, de Dinechin et al., FPT 2008

Training Results

➡25% LUT count reduction + no DSPs compared to a FP32 design
➡higher system-level LUT count for fixed point configuration:

• downstream interconnect + buffering logic for wider accum. output
➡further investigation needed on accumulation techniques at MAC and system level (e.g. [1])

Full MAC configuration: system-level area and test accuracy

[1] An FPGA-Specific Approach to Floating-Point Accumulation and Sum-Of-Products, de Dinechin et al., FPT 2008

➡fixed-point accumulator more sensitive to DNN model size

Training Results

➡25% LUT count reduction + no DSPs compared to a FP32 design
➡higher system-level LUT count for fixed point configuration:

• downstream interconnect + buffering logic for wider accum. output
➡further investigation needed on accumulation techniques at MAC and system level (e.g. [1])

Full MAC configuration: system-level area and test accuracy

[1] An FPGA-Specific Approach to Floating-Point Accumulation and Sum-Of-Products, de Dinechin et al., FPT 2008

➡fixed-point accumulator more sensitive to DNN model size

Summary
➡Archimedes-MPO & mptorch: study resource-accuracy tradeoffs with custom arithmetic
during DNN training
➡narrow floating-point formats seem safe in GEMM multipliers

➡save multiplier area by modifying exceptional value support [1, 2]

[1] FP8 Formats for Deep Learning, Micikevicius et al., arXiv:2209.02915, 2022
[2] 8-bit Numerical Formats for Deep Neural Networks, Noune et al., arXiv:2206.02915, 2022

➡fixed-point accumulators are interesting (e.g. small area), but can require significant extra logic

Summary

[1] FP8 Formats for Deep Learning, Micikevicius et al., arXiv:2209.02915, 2022
[2] 8-bit Numerical Formats for Deep Neural Networks, Noune et al., arXiv:2206.02915, 2022

Limitations & ongoing/future work
• small number of models and datasets
• explore/compare with other data formats besides floating-point & fixed-point
• accumulation architecture exploration at the MAC and system level
• arithmetic aspects of different training algorithms
• error analysis-guided choice of number formats during training
• assess resource-accuracy impact of other training operations:

• parameter updates
• other layer types (e.g. normalization)
• activation function evaluation

➡Archimedes-MPO & mptorch: study resource-accuracy tradeoffs with custom arithmetic
during DNN training
➡narrow floating-point formats seem safe in GEMM multipliers

➡save multiplier area by modifying exceptional value support [1, 2]

➡fixed-point accumulators are interesting (e.g. small area), but can require significant extra logic

Summary

[1] FP8 Formats for Deep Learning, Micikevicius et al., arXiv:2209.02915, 2022
[2] 8-bit Numerical Formats for Deep Neural Networks, Noune et al., arXiv:2206.02915, 2022

Limitations & ongoing/future work
• small number of models and datasets
• explore/compare with other data formats besides floating-point & fixed-point
• accumulation architecture exploration at the MAC and system level
• arithmetic aspects of different training algorithms
• error analysis-guided choice of number formats during training
• assess resource-accuracy impact of other training operations:

• parameter updates
• other layer types (e.g. normalization)
• activation function evaluation Thank You! Questions?

➡Archimedes-MPO & mptorch: study resource-accuracy tradeoffs with custom arithmetic
during DNN training
➡narrow floating-point formats seem safe in GEMM multipliers

➡save multiplier area by modifying exceptional value support [1, 2]

➡fixed-point accumulators are interesting (e.g. small area), but can require significant extra logic

