Exploring Low-Precision Formats in MAC Units for DNN Training

Silviu Filip Inria Rennes silviu.filip@inria.fr

joint work with Olivier Sentieys, Sami Ben Ali,

Overview

Introduction

- Motivation: energy-efficient ML & the need for compression Quantization & low-precision computations for DNN training

Quantization for training acceleration

- Custom precision simulation tools for DNN training acceleration Mixed precision MAC design space exploration for DNN training **Summary & conclusions**

Deep neural networks are growing fast

Deep neural networks are growing fast

The data movement bottleneck

Trained DNN model

Data movement

- move input data & model from memory to compute units
- send partial results back to memory

Computations

vector/matrix manipulations
done on CPU, GPU, DSP, or custom accelerators (e.g., FPGA, ASIC)

The data movement bottleneck

Training a DNN model

Data movement

- move input data & model from memory to compute units
- send partial results back to memory

Computations

vector/matrix manipulations
done on CPU, GPU, DSP, or custom accelerators (e.g., FPGA, ASIC)

The data movement bottleneck

Training a DNN model

Data movement

- move input data & model from memory to compute units
- send partial results back to memory

Computations

vector/matrix manipulations
done on CPU, GPU, DSP, or custom accelerators (e.g., FPGA, ASIC)

Image source: <u>Here's why quantization matters for AI</u>, Jilei Hou, 2019

A visual quantization example:

During inference (i.e., for a trained network):

A visual quantization example:

During inference (i.e., for a trained network):

• store network parameters in low precision

A visual quantization example:

During inference (i.e., for a trained network):

- store network parameters in low precision
- store/compute intermediate signals in low precision

A visual quantization example:

During inference (i.e., for a trained network):

- store network parameters in low precision
- store/compute intermediate signals in low precision

During training:

A visual quantization example:

During inference (i.e., for a trained network):

- store network parameters in low precision
- store/compute intermediate signals in low precision

During training:

• store/compute back propagated gradients in low precision

A visual quantization example:

Quantization effects: the good

Memory usage

storage needed for weights and and activations is proportional to the bit width used

Power consumption

energy is significantly reduced for both computations and memory accesses

Sources: Mark Horowitz (Stanford), energy based on ASIC, area based on TSMC 45nm process Wikimedia Commons ⓒ 🙆

Latency

less memory access and simpler computations lead to faster runtimes and reduced latency

Silicon area

8-bit arithmetic and below requires less area than larger bit width FP compute units

ry rg	y access y (pJ)
е ((64-bit)
	10
	20
	100
	1300-
	2600

Up to 4x energy reduction

	MULT ar	ea (μm²)	
INT8	INT32	FP16	F
282	3495	1640	7
2	7x area	reductio	n

	ADD are	ea (μm²)	
INT8	INT32	FP16	F
36	137	1360	4

116x area reduction

Why quantization for training?

→quantization for inference acceleration is popular & widely studied in recent years

→quantization for training acceleration is less studied, but still important

Why quantization for training?

→quantization for inference acceleration is popular & widely studied in recent years

 \rightarrow quantization for training acceleration is less studied, but still important

Why?

- SOTA models tend to get bigger & bigger, requiring more time & memory to train
- growing need & interest for edge/on-site learning

Estimated cost of training recent NLP models (adapted from [1])

Model	Hardware	Power (W)	Hours
Transformer _{base}	P100x8	1415.78	12
Transformer _{big}	P100x8	1515.43	84
ELMo	P100x3	517.66	336
BERT _{base}	V100x64	12041.51	79
BERT _{base}	TPUv2x64	N/A	96
NAS	P100x8	1515.43	274120
NAS	TPUv2x1	N/A	32623
GTP-2	TPUv2x32	N/A	168

Why is training expensive?

→during inference/forward path, we need to compute activations

Why is training expensive?

→during inference/forward path, we need to compute activations

$$\mathbf{W}_{(t+1)} = \mathbf{W}_{(t)} - \alpha_t \frac{\partial}{\partial \mathbf{V}}$$

→during training (backward path), we also need gradients:

- with respect to the activations (the $\mathbf{a}^{[k]}$ vectors)
- with respect to the parameters (the $\mathbf{w}^{[k]}$ vectors)

Why is training expensive?

 \rightarrow during inference/forward path, we need to compute activations

$$\mathbf{W}_{(t+1)} = \mathbf{W}_{(t)} - \alpha_t \frac{\partial_{\mathbf{w}}}{\partial \mathbf{W}}$$

 \rightarrow during training (backward path), we also need gradients:

- with respect to the activations (the $\mathbf{a}^{[k]}$ vectors)
- with respect to the parameters (the $\mathbf{w}^{[k]}$ vectors)

 \rightarrow it is hard to reduce precision of operations during training Why?

- vanishing & exploding gradients during back propagation
- small updates to parameters, i.e., $|w| \gg |\partial \mathscr{L} / \partial w|$

 \Rightarrow a (possibly) large dynamic range is needed →use floating-point arithmetic

 $\partial \mathscr{L} / \partial \mathbf{X}$

→the de facto family of formats for working with real numbers in the digital world

Example: The IEEE-754 float32 format

⇒several formats are used in practice:

Format	Mantissa size	Exponent size	Bias	Range	Unit roundoff	
fp128	112	15	16383	$10^{\pm 4932}$	1×10^{-34}	
fp64	52	11	1023	$10^{\pm 308}$	1×10^{-16}	established IEEE-754
fp32	23	8	127	$10^{\pm 38}$	6×10^{-8}	formats
fp16	10	5	15	10 ^{±5}	5×10^{-4}	
tfloat32 (tf32)	10	8	127	$10^{\pm 38}$	5×10^{-4}	
bfloat16 (bf16)	7	8	127	$10^{\pm 38}$	4×10^{-3}	<pre>> emerging formats</pre>
fp8	3 2	4 5	7 15	$10^{\pm 2}$ $10^{\pm 5}$	6×10^{-2} 1×10^{-1}	

⇒FP32 is the workhorse format for training AI models⇒there are several emerging FP formats for AI acceleration

→they offer various tradeoffs in terms of range, precision & performance

Peak performance (TFLOPS)							
Device	Year	fp64	fp32	tfloat32	fp16	bfloat16	fp8
P100	2016	5	9	-	19	-	I
V100	2017-2019	8	16	-	125	-	-
A100	2020-2021	19	19	156	312	312	-
H100	2022	48	48	400	800	800	1600

FP performance numbers for recent NVIDIA GPU architectures

When, where and how can we use smaller number formats during DNN training?

 $x = (-1)^{0} \times 1.01_{(2)} \times 2^{124-127} = 1.25 \times 2^{-3} = 0.15625$

 \Rightarrow exponent encoding is a offset-binary representation

- $E_{\min} = O1_{(H)} 7F_{(H)} = -126$
- $E_{\text{max}} = FE_{(H)} 7F_{(H)} = 127$

Ŧ	M = 0	$M \neq 0$	Equation
(H)	± 0	subnormal value	$(-1)^{S} \times 0.M_{(2)} \times 2^{-126}$
.,FE _(H)	norma	l value	$(-1)^{S} \times 1.M_{(2)} \times 2^{E-127}$
(H)	$\pm\infty$	NaN	

When, where and how can we use smaller number formats during DNN training?

 $x = (-1)^{0} \times 1.01_{(2)} \times 2^{124-127} = 1.25 \times 2^{-3} = 0.15625$

 \Rightarrow exponent encoding is a offset-binary representation

- $E_{\min} = O1_{(H)} 7F_{(H)} = -126$
- $E_{\text{max}} = FE_{(H)} 7F_{(H)} = 127$

	M = 0	$M \neq 0$	Equation
(H)	± 0	subnormal value	$(-1)^{S} \times 0.M_{(2)} \times 2^{-126}$
.,FE _(H)	norma	l value	$(-1)^{S} \times 1.M_{(2)} \times 2^{E-127}$
(H)	±∞	NaN	

⇒SOTA training acceleration methods are based on *mixed precision computing*Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

➡SOTA training acceleration methods are based on *mixed precision computing*Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

1. Keep parameters in HP

 $\mathbf{W}_{(t)}$

→SOTA training acceleration methods are based on *mixed precision computing* Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

 \Rightarrow SOTA training acceleration methods are based on *mixed precision computing* Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

→most compute happens in FWD/BWD-part (GEMM calls) for fully connected and convolutional layers)

 \Rightarrow SOTA training acceleration methods are based on *mixed precision computing* Idea: perform parameter updates in high precision (HP) + other ops in low precision (LP)

→most compute happens in FWD/BWD-part (GEMM calls) for fully connected and convolutional layers)

 \Rightarrow some notable examples:

- 32-bit (fp32) + 16-bit (fp16/bfloat16) arithmetic: on NVIDIA GPUs (NVIDIA AMP) & Google TPUs [1, 2]
- sub 16-bit & 8-bit training methods: research work [3-7]

[1] Mixed Precision Training, *Micikevicius et al.*, ICLR 2018

[2] A Study of bfloat16 for Deep Learning Training, Kalamkar et al.,

[3] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019

[4] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al., ICLR, 2020

[5] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020

[6] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021 [7] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Quentization	Formats ((Exponent, Mantissa) / Width)						Top-1
Scheme	w	GEMM Input x	BN Input	dw	da	Acc.	FP32
SWALP [1]	8	8	N/A	8	8	32	70.3
S2FP8 [3]	(5,2)/(8,23)	(5,2)	N/A	(5,2)	(5,2)	(8,23)	70.3
HFP8 [2]	(4,3)	(4,3)	(6,9)	(6,9)	(5,2)	(6,9)	69.4
BM8 [4]	(2,5)	(2,5)	31	(6,9)	(4,3)	31	69.7
FP8-SEB [5]	(4,3)	(4,3)	(4,3)	(4,3)	(4,3)	(8,23)	69.7
FP134 [6]	(3,4)	(3,4)	(3,4)	(3,4)	(3,4)	(8,23)	69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration. Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al., ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Accuracy
Proposed
65.8
69.6
69.4
69.8
69.0
69.8

Accuracy

Proposed

65.8

69.6

69.4

69.8

69.0

69.8

Quantization	Formats ((Exponent, Mantissa) / Width)						Top-1
Scheme	w	GEMM Input x	BN Input	dw	da	Acc.	FP32
SWALP [1]	8	8	N/A	8	8	32	70.3
S2FP8 [3]	(5,2)/(8,23)	(5,2)	N/A	(5,2)	(5,2)	(8,23)	70.3
HFP8 [2]	(4,3)	(4,3)	(6,9)	(6,9)	(5,2)	(6,9)	69.4
BM8 [4]	(2,5)	(2,5)	31	(6,9)	(4,3)	31	69.7
FP8-SEB [5]	(4,3)	(4,3)	(4,3)	(4,3)	(4,3)	(8,23)	69.7
FP134 [6]	(3,4)	(3,4)	(3,4)	(3,4)	(3,4)	(8,23)	69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration. Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al., ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Some notable ideas:

use of a shared exponent bias/scaling factor
at the tensor or block level or other similar tensor statisti

Why?

• shifts dynamic range at runtime, following the distribution of the data (with a small overhead)

ICS

Quentization	Formats ((Exponent, Mantissa) / Width)					Top-1	
Scheme	w	GEMM Input x	BN Input	dw	da	Acc.	FP32
SWALP [1]	8	8	N/A	8	8	32	70.3
S2FP8 [3]	(5,2)/(8,23)	(5,2)	N/A	(5,2)	(5,2)	(8,23)	70.3
HFP8 [2]	(4,3)	(4,3)	(6,9)	(6,9)	(5,2)	(6,9)	69.4
BM8 [4]	(2,5)	(2,5)	31	(6,9)	(4,3)	31	69.7
FP8-SEB [5]	(4,3)	(4,3)	(4,3)	(4,3)	(4,3)	(8,23)	69.7
FP134 [6]	(3,4)	(3,4)	(3,4)	(3,4)	(3,4)	(8,23)	69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration. Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al., ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Some notable ideas:

Accuracy					
Proposed					
65.8					
69.6					
69.4					
69.8					
69.0					
69.8					

➡ use of a shared exponent bias/scaling factor at the tensor or block level or other similar tensor statistics

Why?

- shifts dynamic range at runtime, following the distribution of the data (with a small overhead)
- scale the loss function before back propagation + rescale gradients before parameter update

Why?

• shifts gradients in a representable range when using low precision (i.e., to avoid under/overflows)

$$\mathscr{L} \to \mathscr{L}_{\text{scaled}} = 2^s \cdot \mathscr{L}$$

 $\partial \mathscr{L} / \partial \mathbf{w} = 2^{-s} \cdot \partial \mathscr{L}_{\text{scaled}} / \partial \mathbf{w}$

Quentization	Formats ((Exponent, Mantissa) / Width)					Top-1	
Scheme	w	GEMM Input x	BN Input	dw	da	Acc.	FP32
SWALP [1]	8	8	N/A	8	8	32	70.3
S2FP8 [3]	(5,2)/(8,23)	(5,2)	N/A	(5,2)	(5,2)	(8,23)	70.3
HFP8 [2]	(4,3)	(4,3)	(6,9)	(6,9)	(5,2)	(6,9)	69.4
BM8 [4]	(2,5)	(2,5)	31	(6,9)	(4,3)	31	69.7
FP8-SEB [5]	(4,3)	(4,3)	(4,3)	(4,3)	(4,3)	(8,23)	69.7
FP134 [6]	(3,4)	(3,4)	(3,4)	(3,4)	(3,4)	(8,23)	69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration. Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al., ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Some notable ideas:

➡ rounding used in the quantizer: stochastic [1] & hysteresis [6]

Why?

• stochastic rounding can recapture information that is discarded when bits are rounded off

Accuracy

Proposed

65.8

69.6

69.4

69.8

69.0

69.8

Quentization	Formats ((Exponent, Mantissa) / Width)					Top-1	
Scheme	w	GEMM Input x	BN Input	dw	da	Acc.	FP32
SWALP [1]	8	8	N/A	8	8	32	70.3
S2FP8 [3]	(5,2)/(8,23)	(5,2)	N/A	(5,2)	(5,2)	(8,23)	70.3
HFP8 [2]	(4,3)	(4,3)	(6,9)	(6,9)	(5,2)	(6,9)	69.4
BM8 [4]	(2,5)	(2,5)	31	(6,9)	(4,3)	31	69.7
FP8-SEB [5]	(4,3)	(4,3)	(4,3)	(4,3)	(4,3)	(8,23)	69.7
FP134 [6]	(3,4)	(3,4)	(3,4)	(3,4)	(3,4)	(8,23)	69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration. Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al., ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Some notable ideas:

➡ rounding used in the quantizer: stochastic [1] & hysteresis [6]

Why?

- stochastic rounding can recapture information that is discarded when bits are rounded off
- hysteresis rounding seems to smooth fluctuations in param. updates & stabilizes training

$$\mathcal{Q}^{(t)}\left(w^{(t)}\right) = \begin{cases} \left\lfloor w^{(t)} \right\rfloor & \text{if } w^{t} > \mathcal{Q}^{(t-1)}\left(w^{(t-1)}\right) \\ \left\lceil w^{(t)} \right\rceil & \text{if } w^{t} \leqslant \mathcal{Q}^{(t-1)}\left(w^{(t-1)}\right) \end{cases}$$

Accuracy

Proposed

65.8

69.6

69.4

69.8

69.0

69.8

Quantization	Formats ((Exponent, Mantissa) / Width)					Top-1	
Scheme	w	GEMM Input x	BN Input	dw	da	Acc.	FP32
SWALP [1]	8	8	N/A	8	8	32	70.3
S2FP8 [3]	(5,2)/(8,23)	(5,2)	N/A	(5,2)	(5,2)	(8,23)	70.3
HFP8 [2]	(4,3)	(4,3)	(6,9)	(6,9)	(5,2)	(6,9)	69.4
BM8 [4]	(2,5)	(2,5)	31	(6,9)	(4,3)	31	69.7
FP8-SEB [5]	(4,3)	(4,3)	(4,3)	(4,3)	(4,3)	(8,23)	69.7
FP134 [6]	(3,4)	(3,4)	(3,4)	(3,4)	(3,4)	(8,23)	69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration. Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al., ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Some notable ideas:

➡ rounding used in the quantizer: stochastic [1] & hysteresis [6]

Why?

- stochastic rounding can recapture information that is discarded when bits are rounded off
- hysteresis rounding seems to smooth fluctuations in param. updates & stabilizes training
- ⇒ smart accumulator design (algorithmic/architectural) to optimize accuracy at low precision

Accuracy

Proposed

65.8

69.6

69.4

69.8

69.0

69.8

Quentization	Formats ((Exponent, Mantissa) / Width)				Top-1		
Scheme	w	GEMM Input x	BN Input	dw	da	Acc.	FP32
SWALP [1]	8	8	N/A	8	8	32	70.3
S2FP8 [3]	(5,2)/(8,23)	(5,2)	N/A	(5,2)	(5,2)	(8,23)	70.3
HFP8 [2]	(4,3)	(4,3)	(6,9)	(6,9)	(5,2)	(6,9)	69.4
BM8 [4]	(2,5)	(2,5)	31	(6,9)	(4,3)	31	69.7
FP8-SEB [5]	(4,3)	(4,3)	(4,3)	(4,3)	(4,3)	(8,23)	69.7
FP134 [6]	(3,4)	(3,4)	(3,4)	(3,4)	(3,4)	(8,23)	69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration. Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al., ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Some notable ideas:

➡ rounding used in the quantizer: stochastic [1] & hysteresis [6]

Why?

- stochastic rounding can recapture information that is discarded when bits are rounded off
- hysteresis rounding seems to smooth fluctuations in param. updates & stabilizes training
- ⇒ smart accumulator design (algorithmic/architectural) to optimize accuracy at low precision

Limitations:

→ many approaches use coarse-grained simulation results

Accuracy

Proposed

65.8

69.6

69.4

69.8

69.0

69.8

Quentization	Formats ((Exponent, Mantissa) / Width)					Top-1	
Scheme	w	GEMM Input x	BN Input	dw	da	Acc.	FP32
SWALP [1]	8	8	N/A	8	8	32	70.3
S2FP8 [3]	(5,2)/(8,23)	(5,2)	N/A	(5,2)	(5,2)	(8,23)	70.3
HFP8 [2]	(4,3)	(4,3)	(6,9)	(6,9)	(5,2)	(6,9)	69.4
BM8 [4]	(2,5)	(2,5)	31	(6,9)	(4,3)	31	69.7
FP8-SEB [5]	(4,3)	(4,3)	(4,3)	(4,3)	(4,3)	(8,23)	69.7
FP134 [6]	(3,4)	(3,4)	(3,4)	(3,4)	(3,4)	(8,23)	69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration. Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019 [2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019 [3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al., ICLR, 2020 [4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020 [5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021 [6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Some notable ideas:

 \rightarrow rounding used in the quantizer: stochastic [1] & hysteresis [6]

Why?

- stochastic rounding can recapture information that is discarded when bits are rounded off
- hysteresis rounding seems to smooth fluctuations in param. updates & stabilizes training
- → smart accumulator design (algorithmic/architectural) to optimize accuracy at low precision

Limitations:

- many approaches use coarse-grained simulation results
- \rightarrow HW synthesis results are not that common (yet!)

Accuracy

Proposed

65.8

69.6

69.4

69.8

69.0

69.8

Quentization	Formats ((Exponent, Mantissa) / Width)					Top-1	
Scheme	w	GEMM Input x	BN Input	dw	da	Acc.	FP32
SWALP [1]	8	8	N/A	8	8	32	70.3
S2FP8 [3]	(5,2)/(8,23)	(5,2)	N/A	(5,2)	(5,2)	(8,23)	70.3
HFP8 [2]	(4,3)	(4,3)	(6,9)	(6,9)	(5,2)	(6,9)	69.4
BM8 [4]	(2,5)	(2,5)	31	(6,9)	(4,3)	31	69.7
FP8-SEB [5]	(4,3)	(4,3)	(4,3)	(4,3)	(4,3)	(8,23)	69.7
FP134 [6]	(3,4)	(3,4)	(3,4)	(3,4)	(3,4)	(8,23)	69.8

Overview/Comparison of data formats used in recent research on mixed precision training acceleration. Results are ImageNet accuracy (%) using ResNet18 (adapted from [6]).

[1] SWALP: Stochastic Weight Averaging in Low Precision, Yang et al., ICML 2019
[2] Hybrid 8-bit Floating Point (HFP8) Training and Inference for Deep Neural Networks, Sun et al., NeurIPS 2019
[3] Shifted and Squeezed 8-bit Floating Point Format for Low-Precision Training of Deep Neural Networks, Cambier et al., ICLR, 2020
[4] A Block Minifloat Representation for Training Deep Neural Networks, Fox et al., ICLR 2020
[5] A Neural Network Training Processor with 8-Bit Shared Exponent Bias Floating Point and Multiple-Way Fused Multiply-Add Trees, Park et al., IEEE 2021
[6] Towards Efficient Low-Precision Training: Data Format Optimization and Hysteresis Quantization, Lee et al., ICLR 2022

Some notable ideas:

➡ rounding used in the quantizer: stochastic [1] & hysteresis [6]

Why?

- stochastic rounding can recapture information that is discarded when bits are rounded off
- hysteresis rounding seems to smooth fluctuations in param. updates & stabilizes training
- ⇒ smart accumulator design (algorithmic/architectural) to optimize accuracy at low precision

Limitations:

- many approaches use coarse-grained simulation results
- → HW synthesis results are not that common (yet!)
- → accumulator results are usually in high precision

Simulation support for MP training

Features	QPyTorch[1]	TensorQuant [2]	FASE [3]	MPTorch [4]	Archimedes-MPO [4, 5
Fast	++	+	+	+	+
Accurate		+	+	+	+
Seamless			+		
Dynamic Libraries			+		
Independent			+		
Platforms	CPU/GPU	CPU/GPU	CPU	CPU/GPU/FPGA	CPU/GPU/FPGA

QPyTorch: A Low-Precision Arithmetic Simulation Framework, *Zhang et al.,* arXiv:1910.04540, 2019
 TensorQuant — A Simulation Toolbox for Deep Neural Network Quantization, *Loroch et al.,* arXiv:1710.05758, 2017
 FASE: A Fast, Accurate and Seamless Emulator for Custom Numerical Formats, *Osorio et al.,* ISPASS 2022
 MPTorch and MPArchimedes: Open Source Frameworks to Explore Custom Mixed-Precision Operations for DNN Training on Edge Devices, *Tatsumi et al.,* ROAD4NN 2021
 Mixing Low-Precision Formats in Multiply-Accumulate (MAC) Units for DNN Training, *Tatsumi et al.,* FPT 2022

Simulation support for MP training

Features	QPyTorch[1]	TensorQuant [2]	FASE [3]	MPTorch [4]	Archimedes-MPO [4, 5
Fast	++	+	+	+	+
Accurate		+	+	+	+
Seamless			+		
Dynamic Libraries			+		
Independent			+		
Platforms	CPU/GPU	CPU/GPU	CPU	CPU/GPU/FPGA	CPU/GPU/FPGA

MPTorch repository: https://github.com/mptorch/mptorch

QPyTorch: A Low-Precision Arithmetic Simulation Framework, *Zhang et al.*, arXiv:1910.04540, 2019
 TensorQuant — A Simulation Toolbox for Deep Neural Network Quantization, *Loroch et al.*, arXiv:1710.05758, 2017
 FASE: A Fast, Accurate and Seamless Emulator for Custom Numerical Formats, *Osorio et al.*, ISPASS 2022
 MPTorch and MPArchimedes: Open Source Frameworks to Explore Custom Mixed-Precision Operations for DNN Training on Edge Devices, Tatsumi et al., ROAD4NN 2021
 Mixing Low-Precision Formats in Multiply-Accumulate (MAC) Units for DNN Training, Tatsumi et al., FPT 2022

Archimedes-MPO & MPTorch goals

→vehicles for producing:

- explore novel algorithms for mixed precision DNN training

Work in progress

Starting topic: explore multiply-accumulate (MAC) unit design space

mixed/low precision DNN training accelerator hardware prototypes

Archimedes-MPO Overview

- → extends TinyDNN [1] C++ deep learning library:
 - support for custom precision fixed-point and floating-point
 - GPU & FPGA versions with custom GEMM kernels
- ➡ GEMM kernel on FPGA:
 - adds custom precision support to prior work [2]:
 - data type converter (FP32 \leftrightarrow LP)
 - custom multiplier and adder (MAC) in HLS (Vitis HLS 2020.2)
 - parametrizable architecture:
 - currently using 16 × 4 systolic array (@ 280MHz)
 - one HW kernel is synthesized
 - Xilinx ZCU104 development board
- ➡ GEMM kernel on GPU:
 - bit-accurate with the FPGA version
 - more convenient to deploy & test

[1] https://github.com/tiny-dnn/tiny-dnn

[2] Flexible Communication Avoiding Matrix Multiplication on FPGA with HLS, de Fine Licht et al., FPGA 2020

Archimedes-MPO FPGA Block Diagram

→start by looking at the multiplier and accumulator separately **Multiplier**

→floating-point:

- limit input mantissa size to 3 bits \rightarrow use LUTs for multiplying operand mantissas
- basic configuration (**CFG-1**):
 - support for NaNs/ $\pm \infty$
 - round to nearest, subnormals
- ⇒fixed-point:
 - integer multiplier with output rounded to input data type
 - uses DSP blocks because required fixed-point formats are wider

I/O precision	LUTs	DSF
FP32 (no DSP)	987	0
FP32	374	2
FP16/bfloat16	195/180	1
E6M3 (CFG-1)	115	0
E5M3 (CFG-1)	86	0
E4M3 (CFG-1)	78	0
Q16.16	279	4
Q8.8	106	1
Q7.7	93	1
Q6.6	81	1

⇒start by looking at the multiplier and accumulator separately
Multiplier

⇒floating-point:

- limit input mantissa size to 3 bits \rightarrow use for multiplying operand mantissas
- basic configuration (CFG-1):
 - support for NaNs/ $\pm \infty$
 - round to nearest, subnormals
- ⇒fixed-point:
 - integer multiplier with output rounded to input data type
 - uses DSP blocks because required fixed-point formats are wider

⇒better resource usage for small floating-point vs fixed-point in training accuracy results (later)

,	LU	Ts

	FP32 (no DSP)	987	
	FP32	374	
	FP16/bfloat16	195/180	
	E6M3 (CFG-1)	115	
	E5M3 (CFG–1)	86	
	E4M3 (CFG–1)	78	
	Q16.16	279	
	Q8.8	106	
	Q7.7	93	
wider	Q6.6	81	

LUTs

I/O precision

o input data type -point formats are wide

⇒start by looking at the multiplier and accumulator separately
Multiplier

→decrease resource use by *gradually* removing ancillary support:

CFG-2: subnormal output removal

- information loss + LUT reduction
- **CFG-3:** output rounding removal
 - restores information + output length increases
- **CFG-4:** NaN encoding removal
 - NaN values become normal values
 - remapping $\pm \infty$ to all 1 mantissa

CFG-5 & CFG-6: alternative subnormal inputs

- CFG-5 treats subnormals as normal values
- CFG-6 truncates all subnormals to zero

Area of floating-point multiplier variants

⇒start by looking at the multiplier and accumulator separately
Multiplier

→decrease resource use by *gradually* removing ancillary support:

CFG-2: subnormal output removal

- information loss + LUT reduction
- **CFG-3:** output rounding removal
 - restores information + output length increases
- **CFG-4:** NaN encoding removal
 - NaN values become normal values
 - remapping $\pm \infty$ to all 1 mantissa

CFG-5 & CFG-6: alternative subnormal inputs

- CFG-5 treats subnormals as normal values
- CFG-6 truncates all subnormals to zero

→over 50% area reduction going from CFG-1 to CFG-5/CFG-6

Area of floating-point multiplier variants

 \rightarrow start by looking at the multiplier and accumulator separately **Multiplier**

→decrease resource use by *gradually* removing ancillary support:

CFG–2: subnormal output removal

- information loss + LUT reduction
- **CFG–3:** output rounding removal
 - restores information + output length increases
- **CFG-4:** NaN encoding removal
 - NaN values become normal values
 - remapping $\pm \infty$ to all 1 mantissa

CFG–5 & CFG–6: alternative subnormal inputs

- CFG–5 treats subnormals as normal values
- CFG–6 truncates all subnormals to zero

 \rightarrow over 50% area reduction going from CFG-1 to CFG-5/CFG-6 \rightarrow prefer CFG-5 due to increased representation range

	NaN∕∞		Subnormal		
	conventional	custom	conventional	custom	tru
mantissa	CFG1 to CFG3	CFG4 to CFG6	CFG1 to CFG4	CFG5	CI
b00	∞	65,536	0	0	
b01	NaN	81,920	1.53E-5	3.81E-5	
b10	NaN	98,304	3.05E-5	4.58E-5	
b11	NaN	∞	4.58E-5	5.34E-5	

Alternative encoding schemes for E5M2

→start by looking at the multiplier and accumulator separately Accumulator

 \rightarrow look at low-precision floating-point and fixed-point designs:

- fixed-point: saturation logic
- floating-point: subnormals, swapping, operand shifting, extra bits

FP-mult	FP-mult	Accumulator	
input (CFG5)	output	LUTs	DSPs
FP32	FP32	189	2
E6M3	E7M7	255	0
E6M2	E7M5	185	0
E6M1	E7M3	187	0
E5M3	E6M7	242	0
E5M2	E6M5	187	0
E5M1	E6M3	165	0
_	Q16.16	89	0
-	Q8.13	55	0
-	Q8.8	43	0
-	Q7.7	35	0
-	Q6.6	32	0

Area of accumulator

→start by looking at the multiplier and accumulator separately Accumulator

 \rightarrow look at low-precision floating-point and fixed-point designs:

- fixed-point: saturation logic
- floating-point: subnormals, swapping, operand shifting, extra bits

 \rightarrow fixed-point designs more efficient (NO I/O alignment shifters or rounding)

FP-mult	FP-mult	Accumulator	
input (CFG5)	output	LUTs	DSPs
FP32	FP32	189	2
E6M3	E7M7	255	0
E6M2	E7M5	185	0
E6M1	E7M3	187	0
E5M3	E6M7	242	0
E5M2	E6M5	187	0
E5M1	E6M3	165	0
_	Q16.16	89	0
-	Q8.13	55	0
-	Q8.8	43	0
-	Q7.7	35	0
-	Q6.6	32	0

Area of accumulator

→start by looking at the multiplier and accumulator separately Accumulator

 \rightarrow look at low-precision floating-point and fixed-point designs:

- fixed-point: saturation logic
- floating-point: subnormals, swapping, operand shifting, extra bits

 \rightarrow fixed-point designs more efficient (NO I/O alignment shifters or rounding)

Full MAC unit

 \rightarrow floating-point multiplier + fixed-point acc.?

FP-mult	FP-mult	Accumulator	
input (CFG5)	output	LUTs	DSPs
FP32	FP32	189	2
E6M3	E7M7	255	0
E6M2	E7M5	185	0
E6M1	E7M3	187	0
E5M3	E6M7	242	0
E5M2	E6M5	187	0
E5M1	E6M3	165	0
_	Q16.16	89	0
-	Q8.13	55	0
-	Q8.8	43	0
-	Q7.7	35	0
-	Q6.6	32	0

Area of accumulator

 \rightarrow start by looking at the multiplier and accumulator separately Accumulator

- \rightarrow look at low-precision floating-point and fixed-point designs:
 - fixed-point: saturation logic
 - floating-point: subnormals, swapping, operand shifting, extra bits

 \rightarrow fixed-point designs more efficient (NO I/O alignment shifters or rounding)

Full MAC unit

 \rightarrow floating-point multiplier + fixed-point acc. (

- requires float-to-fixed converters (data s
- type conversion cannot be ignored

	FP-mult	FP-mult	Accum	nulator	Converter (to Q8.13
	input (CFG5)	output	LUTs	DSPs	LUTs
-	FP32	FP32	189	2	-
	E6M3	E7M7	255	0	116
	E6M2	E7M5	185	0	103
	E6M1	E7M3	187	0	72
? - shifters) -	E5M3		242		97
	E5M2	E6M5	187	0	81
	E5M1	E6M3	165	0	67
	-	Q16.16	89	0	-
	-	Q8.13	55	0	-
	-	Q8.8	43	0	-
	-	Q7.7	35	0	-
	-	Q6.6	32	0	-

Area of accumulator and data converter

Experimental setting

 \rightarrow image classification tasks using:

- ResNet-20 [1] & VGG16 [2] CNN architectures with CIFAR-10 dataset
- ResNet-50 [1] CNN on subset of the ImageNet dataset (ImageWoof)

→optimizer (SGD + momentum) and hyperparam. & preprocessing based on the original papers

 \rightarrow use adaptive loss scaling [3]

[1] Deep Residual Learning for Image Recognition, *He et al.*, CVPR 2016 [2] Very Deep Convolutional Neural Networks for Large-Scale Image Recognition, Simonyan et al., ICLR 2015 [3] Mixed Precision Training, Micikevicius et al., ICLR 2018

Experimental setting

 \rightarrow image classification tasks using:

- ResNet-20 [1] & VGG16 [2] CNN architectures with CIFAR-10 dataset
- ResNet-50 [1] CNN on subset of the ImageNet dataset (ImageWoof)

→optimizer (SGD + momentum) and hyperparam. & preprocessing based on the original papers

→use adaptive loss scaling [3]

[1] Deep Residual Learning for Image Recognition, *He et al.*, CVPR 2016 [2] Very Deep Convolutional Neural Networks for Large-Scale Image Recognition, Simonyan et al., ICLR 2015 [3] Mixed Precision Training, Micikevicius et al., ICLR 2018

Impact of loss scaling

Icoss scaling important to keep gradients in representable range when using small formats similar trends when varying the format/precision in the accumulators

Loss scaling impact on test accuracy when using E4 and E5 multipliers

Impact of loss scaling

similar trends when varying the format/precision in the accumulators →E4M2 looks like a good place to start for these examples

Loss scaling impact on test accuracy when using E4 and E5 multipliers

- Icoss scaling important to keep gradients in representable range when using small formats

Multiplier variants

Multiplier variant impact on test accuracy

Multiplier variants

Multiplier variant impact on test accuracy

⇒removing subnormal output support (CFG-2) hurts accuracy significantly

Multiplier variants

→removing subnormal output support (CFG-2) hurts accuracy significantly →output rounding removal (CFG-3), NaN encoding removal (CFG-4), alternative subnormal inputs (CFG–5) restores accuracy

Multiplier variant impact on test accuracy

Accumulator variants: floating-point

→accuracy more sensitive to exponent width than mantissa width (even with loss scaling)

Floating-Point Accumulator impact on test accuracy

Accumulator variants: floating-point

➡E5M5 seems like a good choice

⇒investigating accumulation strategies might help

- Floating-Point Accumulator impact on test accuracy
- →accuracy more sensitive to exponent width than mantissa width (even with loss scaling)

Accumulator variants: fixed-point

→larger format needed: Q8.12

Fixed-Point Accumulator (Q8.f) impact on test accuracy

Full MAC configuration

MAC configurations impact on test accuracy (ResNet20 + CIFAR-10)

⇒start with E4M2 (CFG–5) multiplier + E5M5/Q8.12 (green/orange) accumulator

Full MAC configuration

MAC configurations impact on test accuracy (ResNet20 + CIFAR-10)

⇒start with E4M2 (CFG-5) multiplier + E5M5/Q8.12 (green/orange) accumulator
 ⇒increasing floating-point multiplier input format to E5M2 (CFG-5) (blue)
 restores accuracy in all-FP MAC, but not for fixed-point accumulator

Full MAC configuration

→start with E4M2 (CFG-5) multiplier + E5M5/Q8.12 (green/orange) accumulator ⇒increasing floating-point multiplier input format to E5M2 (CFG-5) (blue) restores accuracy in all-FP MAC, but not for fixed-point accumulator →going to Q8.13 (red) accumulator restores mixed float/fixed MAC accuracy

MAC configurations impact on test accuracy (ResNet20 + CIFAR-10)

Full MAC configuration: system-level area and test accuracy

 \Rightarrow 25% LUT count reduction + no DSPs compared to a FP32 design

- \Rightarrow higher system-level LUT count for fixed point configuration:
 - downstream interconnect + buffering logic for wider accum. output
- \rightarrow further investigation needed on accumulation techniques at MAC and system level (e.g. [1])

		ResNet-20/
		CIFAR-10
` S	DSPs	Acc. (%)
20	320	91.85
10	0	91.04
71	0	90.95

Full MAC configuration: system-level area and test accuracy

25% LUT count reduction + no DSPs compared to a FP32 design
higher system-level LUT count for fixed point configuration:

downstream interconnect + buffering logic for wider accum. output

further investigation needed on accumulation techniques at MAC and system level (e.g. [1])

➡fixed-point accumulator more sensitive to DNN model size

		ResNet-20/	ResNet-50/
		CIFAR-10	Imagewoof
S	DSPs	Acc. (%)	Acc. (%)
20	320	91.85	57.57
10	0	91.04	59.79
71	0	90.95	10.92

Full MAC configuration: system-level area and test accuracy

 \Rightarrow 25% LUT count reduction + no DSPs compared to a FP32 design \Rightarrow higher system-level LUT count for fixed point configuration:

- downstream interconnect + buffering logic for wider accum. output
- →fixed-point accumulator more sensitive to DNN model size

		ResNet-20/	ResNet-50/
		CIFAR-10	Imagewoof
` S	DSPs	Acc. (%)	Acc. (%)
20	320	91.85	57.57
10	0	91.04	59.79
71	0	90.95	10.92
76	0 0	n/a	59.38

 \rightarrow further investigation needed on accumulation techniques at MAC and system level (e.g. [1])

Summary

- ➡Archimedes-MPO & mptorch: study resourd during DNN training
- narrow floating-point formats seem safe in GEMM multipliers
- ⇒save multiplier area by modifying exceptional value support [1, 2]
- ⇒fixed-point accumulators are interesting (e.g. small area), but can require significant extra logic

→Archimedes-MPO & mptorch: study resource-accuracy tradeoffs with custom arithmetic

Summary

- ➡Archimedes-MPO & mptorch: study resound during DNN training
- narrow floating-point formats seem safe in GEMM multipliers
- ⇒save multiplier area by modifying exceptional value support [1, 2]
- ⇒fixed-point accumulators are interesting (e.g. small area), but can require significant extra logic

Limitations & ongoing/future work

- small number of models and datasets
- explore/compare with other data formats besides floating-point & fixed-point
- accumulation architecture exploration at the MAC and system level
- arithmetic aspects of different training algorithms
- error analysis-guided choice of number formats during training
- assess resource-accuracy impact of other training operations:
 - parameter updates
 - other layer types (e.g. normalization)
 - activation function evaluation

→Archimedes-MPO & mptorch: study resource-accuracy tradeoffs with custom arithmetic

Summary

- during DNN training
- marrow floating-point formats seem safe in GEMM multipliers
- \Rightarrow save multiplier area by modifying exceptional value support [1, 2]
- ⇒fixed-point accumulators are interesting (e.g. small area), but can require significant extra logic

Limitations & ongoing/future work

- small number of models and datasets
- explore/compare with other data formats besides floating-point & fixed-point
- accumulation architecture exploration at the MAC and system level
- arithmetic aspects of different training algorithms
- error analysis-guided choice of number formats during training
- assess resource-accuracy impact of other training operations:
 - parameter updates
 - other layer types (e.g. normalization)
 - activation function evaluation

Archimedes-MPO & mptorch: study resource-accuracy tradeoffs with custom arithmetic

Thank You! Questions?