
Chromatic Analysis of Numerical
Program

David DEFOUR, LAMPS, Univ. of Perpignan

Franck Vedrine, Univ. Paris-Saclay CEA List

“A picture is worth a thousand words”
import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt

Create a low-pass Butterworth filter
def butter_lowpass(cutoff, fs, order=5):

nyquist = 0.5 * fs
normal_cutoff = cutoff / nyquist
b, a = butter(order, normal_cutoff, btype='low', analog=False)
return b, a

Apply the filter to the input signal
def butter_lowpass_filter(data, cutoff, fs, order=5):

b, a = butter_lowpass(cutoff, fs, order=order)
y = lfilter(b, a, data)
return y

Example usage
Generate some random input data
fs = 100.0 # Sample rate (Hz)
t = np.linspace(0, 1, int(fs), endpoint=False)
data = np.sin(2 * np.pi * 5 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)

Filter parameters
order = 6
cutoff_freq = 10.0 # Desired cutoff frequency (Hz)

Apply the filter to the input data
filtered_data = butter_lowpass_filter(data, cutoff_freq, fs, order)

“A picture is worth a thousand words”

• Question:
• How to analyze the relationship between input values, output values,

coefficient, error ?

• Usage: debugging, optimizing, teaching

• Call the specialist…

“A picture is worth a thousand words”

• … or conduce a chromatic analysis

Relative weight in the output value of:
- The input values
- Others program parameters
- Rounding errors

“A picture is worth a thousand words”

• … or conduce a chromatic analysis

Given an output, what input value account for it

A few word about colors…. In RGB

RED
(122,0,0)

BLUE
(0,0,122)+ =

GREEN
(0,122,0)

BLUE
(0,0,122)+ =

RED
(122,0,0)

GREEN
(0,122,0)+ =

A few word about colors…. In RGB

RED
(122,0,0)

BLUE
(0,0,122)+ = PURPLE

(122,0,122)

GREEN
(0,122,0)

BLUE
(0,0,122)+ = CIAN

(0,122,122)

RED
(122,0,0)

GREEN
(0,122,0)+ = YELLOW

(122,122,0)

A few word about colors…. In RGB

RED
(122,0,0)

BLUE
(0,0,122)+ = PURPLE

(122,0,122)

GREEN
(0,122,0)

BLUE
(0,0,122)+ = CIAN

(0,122,122)

RED
(122,0,0)

GREEN
(0,122,0)+ = YELLOW

(122,122,0)

CIAN
(0,122,122)

CIAN
(0,254,254)+ =

PURPLE
(122,0,122)

YELLOW
(122,122,0)+ =

+ = PURPLE
(254,0,254)

YELLOW
(254,254,0)

A few word about colors…. In RGB

RED
(122,0,0)

BLUE
(0,0,122)+ = PURPLE

(122,0,122)

GREEN
(0,122,0)

BLUE
(0,0,122)+ = CIAN

(0,122,122)

RED
(122,0,0)

GREEN
(0,122,0)+ = YELLOW

(122,122,0)

CIAN
(0,122,122)

CIAN
(0,254,254)+ =

PURPLE
(122,0,122)

YELLOW
(122,122,0)+ =

+ = PURPLE
(254,0,254)

YELLOW
(254,254,0)

Colors naturally provides visual information under additive property

Introduction

• Assessment
• For some applications (DNN), we are more concerned by understanding the

resulting value than by the propagation of errors

• Objective
• Estimate the relations between input and output variables under additive

property

• Proposed solution
• Propose the concept of chromatic number to tint scalar or set of scalars
• Each scalar is decomposed as the sum of tinted values

Background

• Differences between chromatic analysis and error analysis
• Example:

• 𝑓 𝑥, 𝑦 = 𝑥 + exp(𝑦) with 𝑥 = 10 000 and 𝑦 = 8

• Error analysis => a small perturbation on y has a relatively stronger impact on f than one
on x

• Chromatic analysis => the weight of x (10 000) is far greater than the weight of y (2 980)
in f(12 980)

Chromatic analysis Error analysis

Background

1. Sensitivity analysis
• Evaluate how variations in input parameters affect the output
• Identify which input parameters have the greatest effect on the output
• Issues:

• Curse of dimensionality, inability to handle correlated input, difficult to interpret variation on
multiple input

2. Componentwise analysis
• Condition number is a global measure that does not consider the input structure and

dilute precise information into a global number.

3. Automatic Differentiation
• Compute the gradient at each step
• Forward or backward according to the input/output dimensionality
• Possible implementation:

• Each number X is replaced by a Dual Number 𝑥 𝑥′ where x’ is the derivative such that 𝑋 =
𝑥 + 𝑥′𝜀 with𝜀 an abstract number such that 𝜀2 = 0.

Chromatic number: Definition

• A Chromatic Number consists in associating a color to scalar or set of
scalar in order to track them during computation

• It correspond to a pair 𝑥 𝑉𝑥 :
• 𝑥 is the floating-point number

• 𝑉𝑥 is a vector of 𝑛 floating-point numbers representing the weight of the 𝑛 tint within 𝑥

• Additive property
• 𝑥 ≈ σ𝑖=0

𝑛 𝑉𝑥 𝑖

• Property
• 𝑉𝑥 Corresponds to a component-wise decomposition of numerical values

• Multiple scalars can be set with the same tint (helps tracking multiple values
at the same time and helps reduces the dimensionality of the problem)

Chromatic number: Operations

• Set a new arithmetic on chromatic numbers:
• Addition: < 𝑥, 𝑉𝑥 > + < 𝑦 , 𝑉𝑦 >= < 𝑥 + 𝑦 , 𝑉𝑥 + 𝑉𝑦 >

• Subtraction: < 𝑥, 𝑉𝑥 > − < 𝑦 , 𝑉𝑦 >= < 𝑥 − 𝑦 , 𝑉𝑥 − 𝑉𝑦 >

• Multiplication: < 𝑥 , 𝑉𝑥 > .< 𝑦 , 𝑉𝑦 >= < 𝑥. 𝑦 ,
𝑦.𝑉𝑥+𝑥.𝑉𝑦

2
>

• Division:
<𝑥 ,𝑉𝑥>

<𝑦 ,𝑉𝑦>
=<

𝑥

𝑦
,

𝑥

𝑉𝑦
+
𝑉𝑥
𝑦

2
>=<

𝑥

𝑦
, (

𝑥

𝑦2
. 𝑉𝑦 +

𝑉𝑥

𝑦
Τ) 2 >

• Sqrt(x): < 𝑥 , 𝑉𝑥 >= < 𝑥,
𝑉𝑥

𝑥
>

• Any functions: 𝑓 < 𝑥, 𝑉𝑥 >,< 𝑦 , 𝑉𝑦 > = < 𝑓 𝑥 + 𝑦 ,
𝑓 𝑥,𝑉𝑦 +𝑓 𝑉𝑥,𝑦

2
>

Chromatic number: Extentions

• Garbage element
• Set a specific element in 𝑉𝑥 to collect contributions of non-chromatic numbers

to preserve additive property.

• Optional element if every computation were done without rounding error
(𝑥 = σ𝑖=0

𝑛 𝑉𝑥[𝑖])

• Error element
• Set an element to track rounding errors performed on 𝑥 in 𝑥 𝑉𝑥
• Accumulate rounding error similarly to compensated algorithm (use of EFT &

extended precision)

Chromatic number: Implementation

• Space and time complexity grows linearly with the number of tinted
values.

• Example: A chromatic analysis on a 8 Mb dense matrix will lead to 8 Tb of
intermediate representation.

• C++/Python implementation with 𝑉𝑥 stored either as a vector or dictionary

• Optimization 1: Fusion of small contributions
• Discard tinted element which are becoming too small compared to others and

accumulate them in the garbage element (
𝑉𝑥 𝑖

𝑉𝑥 𝑗
≥ 𝐶 with 𝐶 a tunable

parameter typically set to 253 for double precision). Particularly useful when
used when 𝑉𝑥 is a dictionary structure.

Chromatic number: Implementation

• Optimization 2: Refinement
algorithm

• Start the chromatic analysis by
aggregating the maximum number of
value under the same tint in order to
minimize the size of 𝑉𝑥 .

• Detect which tint account for the most
and restart the computation by
subdividing the selected tint, while
detecting under-approximation
(cancellation within a tint)

Experiments N°1: Archimedes’ computation
of Pi

Error

x

Garbage
element

Constant
“1”

• Goal:
• Track the weight of the

initial constant 1

Experiments N°2.1: inference DNN MNIST

• Goal
• Track the weight of pixels during

inference by assigning tint to each pixel of
an image

• MNIST 28x28 pixel images, 10 output
class

• Possible usage: adversarial attack to alter
output probability classification (Fig. 2)

• Ouput
• 10 chromatics numbers for each output

class

Experiments N°2.2: Training DNN MNIST

• Goal
• Track the weight of image class during learning phase

• MNIST 28x28 pixel images, each pixel of an image tinted according to its
classification (0 to 9)

• Possible usage: understand the network numerical behavior

• Ouput
• Resulting networking made of chromatic numbers tinted according to the

input images class

Experiment N°3: Sparse solver

• Matrix from MatrixMarket:
• BCSSTK13: size 2003 x 2003; 42943 entries; estimated

conditioned number 4.6 1010
• BCSSTK14: size 1806 x 1806; 32630 entries; estimated

conditioned number 1.3 1010

• Execution time in sec. and memory to solve BCSSTK14 between
Python and C++ version.

• 6-10x overhead in Python, 10-700x overhead in C++ (due to the sparsity of
the system)

• Memory usage grows linearly => x500-1000 on memory for 1000 tinted
values

Experiment N°3: Sparse solver

• Iterative refinement algorithm , starting with a 4x4 subdivision
according to the index in each direction of the matrix BCSSTK13.

• Stops after 5 iterations in 836 sec.

Reference
Analysis conduced while keeping the 128 most
contributing tint in each cell. (2205 sec)
=> More time consuming and less precise than the
iterative algorithm

Conclusion

• Chromatic analysis
• Provide a numerical analysis based on the contribution of tinted scalars
• Propose an additive decomposition of results
• Allows fusion of input data to limit the dimensionality problem encountered

with other analysis
• Thanks to the additive property, it is possible to combine the process with an

iterative refinement algorithm to reduce the memory overhead
• Helps understand what is important among input values, constant, scalar
• Cope with

• Future works
• Combine chromatic analysis with others (global sensitivity analysis)
• Investigate various tinting mechanism

• According to data type, time, location (functions, MPI Process…),

	Diapositive 1 Chromatic Analysis of Numerical Program
	Diapositive 2 “A picture is worth a thousand words”
	Diapositive 3 “A picture is worth a thousand words”
	Diapositive 4 “A picture is worth a thousand words”
	Diapositive 5 “A picture is worth a thousand words”
	Diapositive 6 A few word about colors…. In RGB
	Diapositive 7 A few word about colors…. In RGB
	Diapositive 8 A few word about colors…. In RGB
	Diapositive 9 A few word about colors…. In RGB
	Diapositive 10 Introduction
	Diapositive 11 Background
	Diapositive 12 Background
	Diapositive 13 Chromatic number: Definition
	Diapositive 14 Chromatic number: Operations
	Diapositive 15 Chromatic number: Extentions
	Diapositive 16 Chromatic number: Implementation
	Diapositive 17 Chromatic number: Implementation
	Diapositive 18 Experiments N°1: Archimedes’ computation of Pi
	Diapositive 19 Experiments N°2.1: inference DNN MNIST
	Diapositive 20 Experiments N°2.2: Training DNN MNIST
	Diapositive 21 Experiment N°3: Sparse solver
	Diapositive 22 Experiment N°3: Sparse solver
	Diapositive 23 Conclusion

