
Chromatic Analysis of Numerical Program

David DEFOUR, LAMPS, Univ. of Perpignan

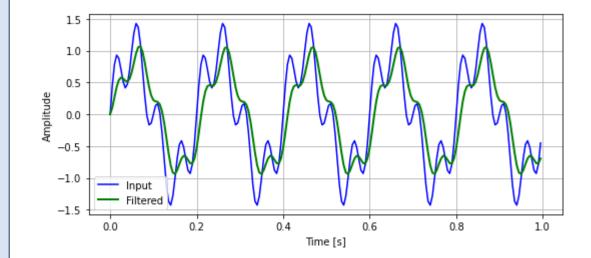
Franck Vedrine, Univ. Paris-Saclay CEA List

list

"A picture is worth a thousand words"

G

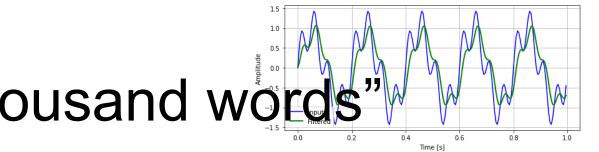
```
import numpy as np
from scipy.signal import butter, lfilter, freqz
import matplotlib.pyplot as plt
```


```
# Create a low-pass Butterworth filter
def butter_lowpass(cutoff, fs, order=5):
    nyquist = 0.5 * fs
    normal_cutoff = cutoff / nyquist
    b, a = butter(order, normal_cutoff, btype='low', analog=False)
    return b, a
```

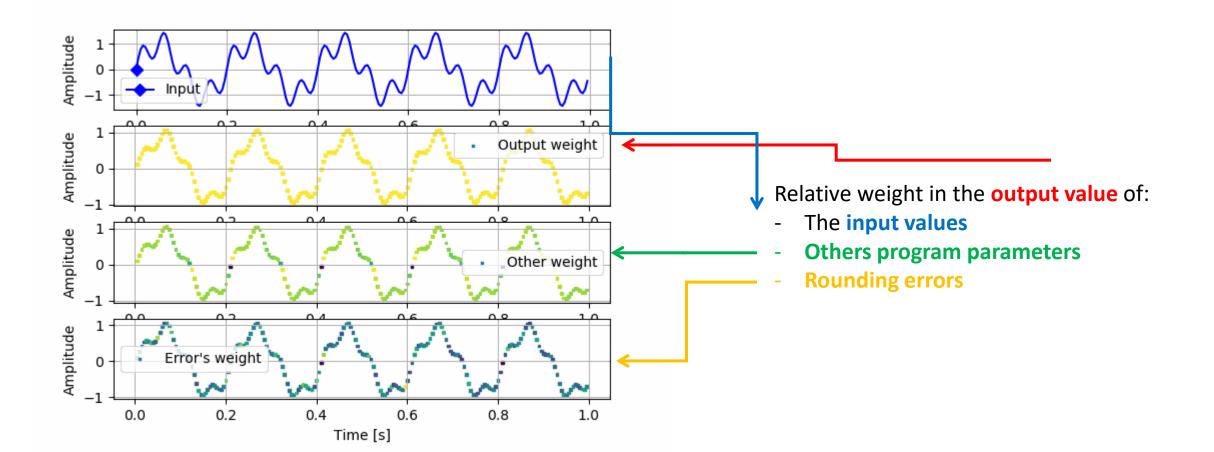
```
# Apply the filter to the input signal
def butter_lowpass_filter(data, cutoff, fs, order=5):
    b, a = butter_lowpass(cutoff, fs, order=order)
    y = lfilter(b, a, data)
    return y
```

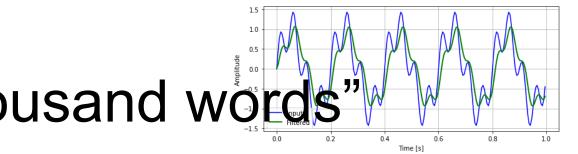
```
# Example usage
# Generate some random input data
fs = 100.0  # Sample rate (Hz)
t = np.linspace(0, 1, int(fs), endpoint=False)
data = np.sin(2 * np.pi * 5 * t) + 0.5 * np.sin(2 * np.pi * 20 * t)
```

```
# Filter parameters
order = 6
cutoff freq = 10.0 # Desired cutoff frequency (Hz)
```


```
# Apply the filter to the input data
filtered_data = butter_lowpass_filter(data, cutoff_freq, fs, order)
```


"A picture is worth a thousand words"


- Question:
 - How to analyze the relationship between input values, output values, coefficient, error ?
 - Usage: debugging, optimizing, teaching
- Call the specialist...

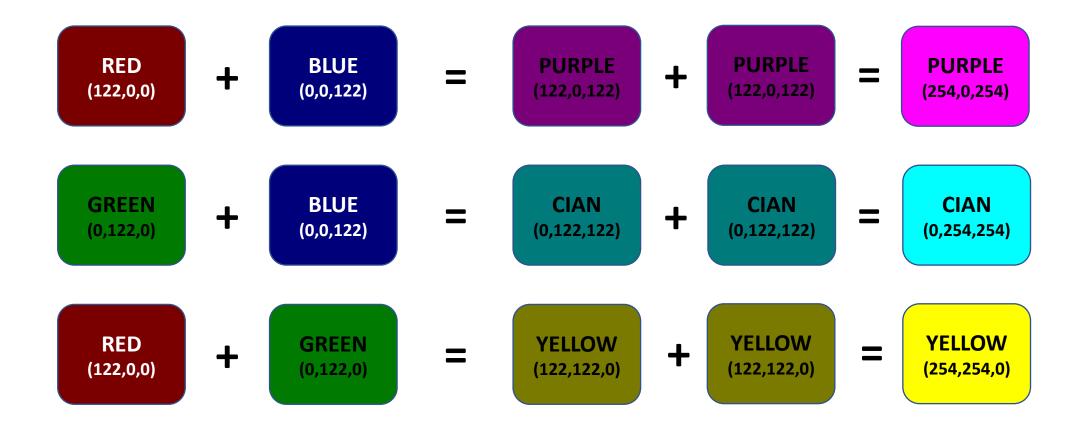

ן ר	XÉCUTER ET DÉBOGUER	\blacktriangleright Aucune configuration \checkmark 🐯 … \equiv Vis	sionneuse de données - filtered_	d 🛛 🕐
		💠 filte	ered_data (100,)	
C	> 01: value: 0.502/321205/55/70, [1.52]	7e-01,9.4290e-18,0.0000e+00,1.5137e-01,0.0000e+00,0.00	ე ↑ 0	
	> 02: value: 0.5261296562575724, [3.09544	e-01,1.8323e-17,0.0000e+00,4.6479e-02,1.7011e-01,0.000	v	
8	> 03: value: 0.5218830507722357, [3.55996	e-01,2.8699e-17,0.0000e+00,1.4272e-02,5.2234e-02,9.938 =*		
	> 04: value: 0.5039961480291837, [3.61316	e-01,7.4980e-17,0.0000e+00,4.3825e-03,1.6039e-02,3.051	0 0	
2	> 05: value: 0.6953889287545489, [4.5864	le-01,-2.8232e-17, 0.0000e+00, 1.3457e-03, 4.9251e-03,	1 0.3027321197	
1	> 06: value: 0.9775351371056288, [6.2960	e-01,4.1976e-17,0.0000e+00,4.1322e-04,1.5123e-03,2.877	2 0.5261296563	
	> 07: value: 1.0259133319877145, [7.062	3e-01,-3.5806e-17, 0.0000e+00, 1.2689e-04, 4.6438e-04,	3 0.5218830508	
	> 08: value: 0.7434488352245152, [5.8866	0e-01,-1.5157e-17, 0.0000e+00, 3.8962e-05, 1.4259e-04,	4 0.503996148	
	> 09: value: 0.39232294576985166, [3.76	00e-01, 1.5715e-17, 0.0000e+00, 1.1964e-05, 4.3786e-05	5 0.6953889288	
3	> 10: value: 0.24093746915529385, [2.36	20e-01, 1.5629e-17, 0.0000e+00, 3.6737e-06, 1.3445e-05	6 0.9775351371	
	> 11: value: 0.2122186631411353, [1.7864	le-01,-3.8947e-18, 0.0000e+00, 1.1281e-06, 4.1285e-06,		
	> 12: value: 0.016925730176354292, [6.3	317e-02,-9.0038e-18, 0.0000e+00, 3.4639e-07, 1.2677e-0	7 1.025913332	
	> 13: value: -0.41518462717864657, [-1.88	315e-01, 1.7354e-17, 0.0000e+00, 1.0636e-07, 3.8928e-0	8 0.7434488352	
	SPION	00 01 1 COE10 10 0 00000 00 1 10C10 00 1 10E20 07	9 0.3923229458	
	PILE DES APPELS		10 0.2409374692	
• ~ P	POINTS D'ARRÊT	··· 4	\cdots 🛱 Python Debug Console $+$ \vee 🔟 🛍	
	Raised Exceptions	e 5.	, in <module></module>	
	 Uncaught Exceptions 		"execution_count": null,	
	filter.ipynb filter		eError: name 'null' is no	ot defi
1	filter.ipynb filter	37 ned	four@PATTERSON:~/interflo	n/chro
•	gauss.py linalg		four@PATTERSON:~/interflo	
2	✓ gauss.py linalg defour@PATTERSON:~/interf			
•	✓ gauss.py linalg	186 mati	ic3\$	

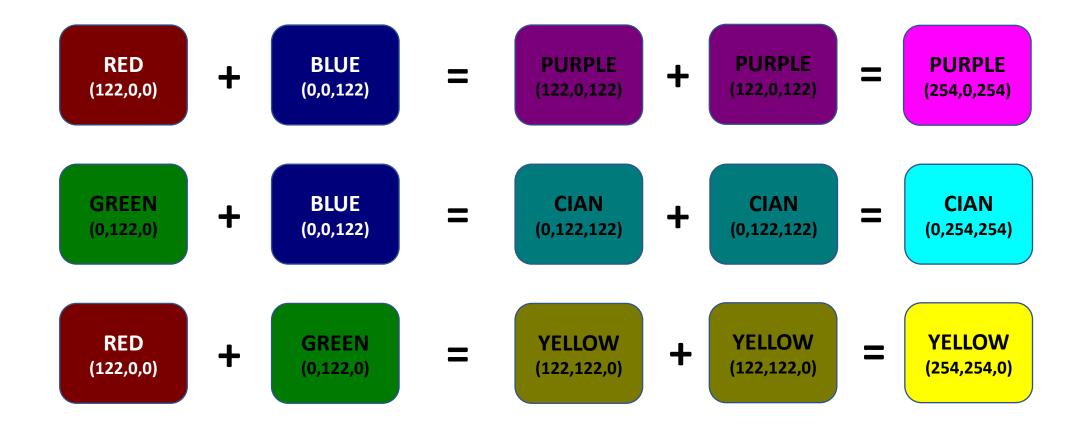
"A picture is worth a thousand words"

• ... or conduce a chromatic analysis

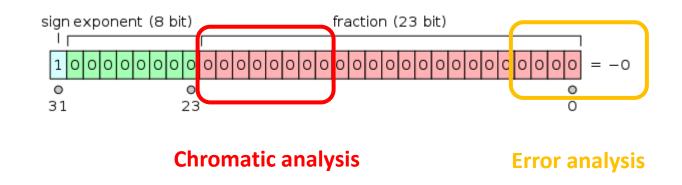


"A picture is worth a thousand words


• ... or conduce a chromatic analysis



Given an output, what input value account for it


Colors naturally provides visual information under additive property

Introduction

- Assessment
 - For some applications (DNN), we are more concerned by understanding the resulting value than by the propagation of errors
- Objective
 - Estimate the relations between input and output variables under additive property
- Proposed solution
 - Propose the concept of chromatic number to tint scalar or set of scalars
 - Each scalar is decomposed as the sum of tinted values

Background

- Differences between chromatic analysis and error analysis
 - Example:
 - $f(x, y) = x + \exp(y)$ with $x = 10\,000$ and y = 8
 - Error analysis => a small perturbation on y has a relatively stronger impact on f than one on x
 - Chromatic analysis => the weight of x (10 000) is far greater than the weight of y (2 980) in f(12 980)

Background

- 1. Sensitivity analysis
 - Evaluate how variations in input parameters affect the output
 - Identify which input parameters have the greatest effect on the output
 - Issues:
 - Curse of dimensionality, inability to handle correlated input, difficult to interpret variation on multiple input
- 2. Componentwise analysis
 - Condition number is a global measure that does not consider the input structure and dilute precise information into a global number.
- 3. Automatic Differentiation
 - Compute the gradient at each step
 - Forward or backward according to the input/output dimensionality
 - Possible implementation:
 - Each number X is replaced by a Dual Number $\langle x | x' \rangle$ where x' is the derivative such that $X = x + x' \varepsilon$ with ε an abstract number such that $\varepsilon^2 = 0$.

Chromatic number: Definition

- A **Chromatic Number** consists in associating a color to scalar or set of scalar in order to track them during computation
 - It correspond to a pair $\langle x | V_x \rangle$:
 - *x* is the floating-point number
 - V_x is a vector of n floating-point numbers representing the weight of the n tint within x
 - Additive property
 - $x \approx \sum_{i=0}^{n} V_x[i]$
- Property
 - V_{χ} Corresponds to a component-wise decomposition of numerical values
 - Multiple scalars can be set with the same tint (helps tracking multiple values at the same time and helps reduces the dimensionality of the problem)

Chromatic number: Operations

- Set a new arithmetic on chromatic numbers:
 - Addition: $< x, V_x > + < y, V_y > = < x + y, V_x + V_y >$
 - Subtraction: $< x, V_x > < y, V_y > = < x y, V_x V_y >$
 - Multiplication: $< x , V_x > . < y , V_y > = < x . y , \frac{y . V_x + x . V_y}{2} >$
 - Division: $\frac{\langle x, V_x \rangle}{\langle y, V_y \rangle} = \langle \frac{x}{y}, \frac{\frac{x}{V_y} + \frac{V_x}{y}}{2} \rangle = \langle \frac{x}{y}, (\frac{x}{y^2}, V_y + \frac{V_x}{y})/2 \rangle$
 - Sqrt(x): $\sqrt{\langle x, V_x \rangle} = \langle \sqrt{x}, \frac{V_x}{\sqrt{x}} \rangle$
 - Any functions: $f(\langle x, V_x \rangle, \langle y, V_y \rangle) = \langle f(x+y), \frac{f(x, V_y) + f(V_x, y)}{2} \rangle$

Chromatic number: Extentions

• Garbage element

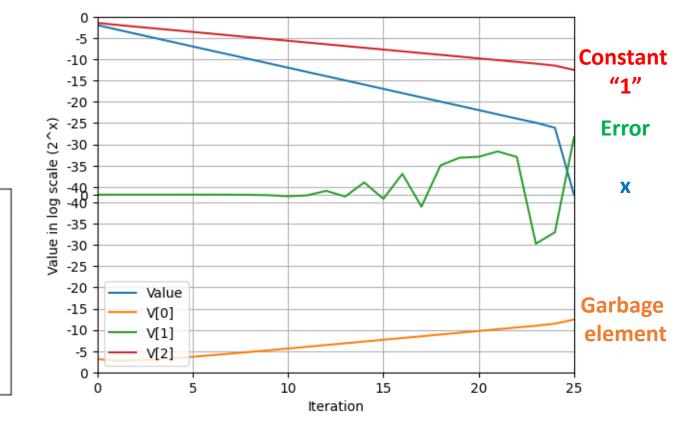
- Set a specific element in V_{χ} to collect contributions of non-chromatic numbers to preserve additive property.
- Optional element if every computation were done without rounding error $(x = \sum_{i=0}^{n} V_x[i])$

• Error element

- Set an element to track rounding errors performed on x in $\langle x | V_x \rangle$
- Accumulate rounding error similarly to compensated algorithm (use of EFT & extended precision)

Chromatic number: Implementation

- Space and time complexity grows linearly with the number of tinted values.
 - Example: A chromatic analysis on a 8 Mb dense matrix will lead to 8 Tb of intermediate representation.
 - C++/Python implementation with V_{χ} stored either as a vector or dictionary
- Optimization 1: Fusion of small contributions
 - Discard tinted element which are becoming too small compared to others and accumulate them in the garbage element ($\left|\frac{V_{x[i]}}{V_{x[j]}}\right| \ge C$ with C a tunable parameter typically set to 2^{53} for double precision). Particularly useful when used when V_{χ} is a dictionary structure.


Chromatic number: Implementation

- Optimization 2: Refinement algorithm
 - Start the chromatic analysis by aggregating the maximum number of value under the same tint in order to minimize the size of V_x .
 - Detect which tint account for the most and restart the computation by subdividing the selected tint, while detecting under-approximation (cancellation within a tint)

```
Algorithm 1 Contribution refinement subdivision algorithm
Require: O=func(I) the function to analyse
Require: I the set of scalar to track
Require: card(I) = N, and O = \langle o, V_o \rangle
                                                ▷ Initial Spliting
  I' = split(I)
  do
      O'=func(I')
      S =False
      for i in I' do
          if |o'| > k_0 |V_{o'}[1]| and |V_{o'}[i+2]| > k_1 |V_{o'}[1]| and
              card(I'[i]) > 1 then
              I' = split(I'[i])
              S = True
          end if
      end for
  while S
```

Experiments N°1: Archimedes' computation of Pi

- Goal:
 - Track the weight of the initial constant 1

Experiments N°2.1: inference DNN MNIST

• Goal

- Track the weight of pixels during inference by assigning tint to each pixel of an image
- MNIST 28x28 pixel images, 10 output class
- Possible usage: adversarial attack to alter output probability classification (Fig. 2)
- Ouput
 - 10 chromatics numbers for each output class

7377:	373777	73773734777
	333377	7777333377
3337	373733	33373737333
7733	313377	7733313377
	177333	33377773333
3773	773733	377373733
7717	733333	7717733333
7333.	317337	7333317337
7777.	373733	7777373733
3773	773137	3773773737

Fig. 2. Adversarial construction on MNIST dataset of 3s and 7s such that each example has a minimal number of pixels alterted to mislead the discrimination between the two sets among the ten classification bins.

Experiments N°2.2: Training DNN MNIST

• Goal

- Track the weight of image class during learning phase
- MNIST 28x28 pixel images, each pixel of an image tinted according to its classification (0 to 9)
- Possible usage: understand the network numerical behavior
- Ouput
 - Resulting networking made of chromatic numbers tinted according to the input images class

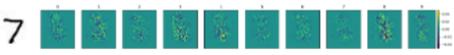
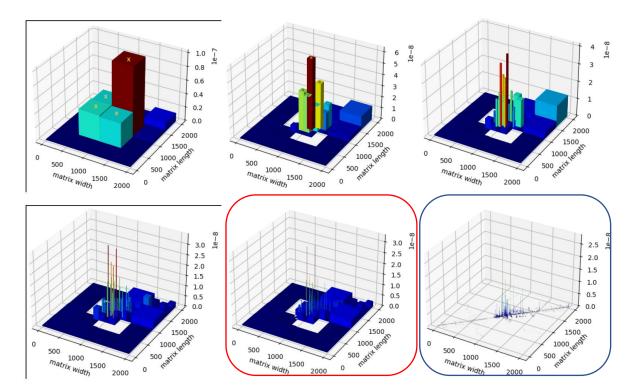


Fig. 3. Example of absolute pixel weight generated to classify image "7" with a given network trained with chromatic numbers, where image pixels are indexed according to the class to which they belong (index between 0 and 9). On each image, the color of the pixel corresponds to the contribution weight of the pixel.


Experiment N°3: Sparse solver

- Matrix from MatrixMarket:
 - BCSSTK13: size 2003 x 2003; 42943 entries; estimated conditioned number 4.6 1010
 - BCSSTK14: size 1806 x 1806; 32630 entries; estimated conditioned number 1.3 1010
- Execution time in sec. and memory to solve BCSSTK14 between Python and C++ version.
 - 6-10x overhead in Python, 10-700x overhead in C++ (due to the sparsity of the system)
 - Memory usage grows linearly => x500-1000 on memory for 1000 tinted values

Number of	no-instr	1	16	32
tinted value				
followed				
Python	250s /70Mo	1634s	2022s	2500s
		/108Mo	/125Mo	/156Mo
C++	0.13s /21Mo	1.3s	40s	92s
		/26Mo	/135Mo	/253Mo

Experiment N°3: Sparse solver

- Iterative refinement algorithm , starting with a 4x4 subdivision according to the index in each direction of the matrix BCSSTK13.
- Stops after 5 iterations in 836 sec.

Reference

Analysis conduced while keeping the 128 most contributing tint in each cell. (2205 sec) => More time consuming and less precise than the iterative algorithm

Conclusion

- Chromatic analysis
 - Provide a numerical analysis based on the contribution of tinted scalars
 - Propose an additive decomposition of results
 - Allows fusion of input data to limit the dimensionality problem encountered with other analysis
 - Thanks to the additive property, it is possible to combine the process with an iterative refinement algorithm to reduce the memory overhead
 - Helps understand what is important among input values, constant, scalar
 - Cope with
- Future works
 - Combine chromatic analysis with others (global sensitivity analysis)
 - Investigate various tinting mechanism
 - According to data type, time, location (functions, MPI Process...),