Tâche 5 : Post-traitement et analyse statistique des résultats

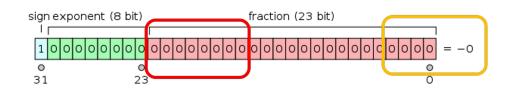
EDF Lab Paris-Saclay – 2023-06-08

Pablo de Oliveira <pablo.oliveira@uvsq.fr>

Objectifs et sous-tâches

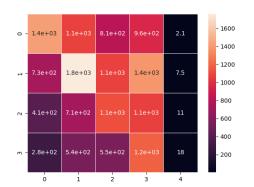
- 5.1 Analyse et modèles statistiques
 - Modéliser la distribution des erreurs en arithmétique stochastique
- 5.2 Localisation d'erreurs
 - Localiser les erreurs numériques au sein d'un programme
- 5.3 Visualisation de données
 - Représentations graphiques pour interpréter les résultats produits par les outils d'Interflop

5.1 Analyse et modèles statistiques


- Estimateur de chiffres significatifs pour arith. stochastiques [TOMS'22]
 - Distributions normales et non-normales
 - Intégré à Vérificarlo et Verrou
 - Paquet Python significantdigits [Y. Chatelain, https://github.com/verificarlo/significantdigits]
- Analyse d'erreur pour l'arrondi stochastique [SISC'23]
 - Thèse de E.M. El-Arar (présentation vendredi)
 - Méthodes pour analyser des algorithmes : variance ou martingale
 - Bornes d'erreurs pour des algorihmes linéaires et non-linéaires
 - produit scalaire, schéma d'Horner, somme Pairwise, calcul de la variance, ...
- Modèles d'arrondi stochastique non-déterministe, B. Lathuilière (présentation vendredi)

5.2 Localisation d'Erreurs

- Localisation au sein d'un code Delta-Debug [Zeller]
 - Implémentation pour backends asynchrones [B. Lathuilière]
 - → Intégrée à Verrou et Verificarlo
 - Implémentation synchrone
 - → Promise
- Verificarlo-CI : suivi des versions de code pour intégration continue
 - → Développé au sein du CoE TREX, intégré à Verificarlo


5.3 Visualisation : Analyse chromatique

- Objectifs
 - Suivi des valeurs numériques dans un programme
- Réalisation
 - Bibliothèque Python/C++ de surcharge d'opérateur
 - Associe une couleur à un scalaire ou groupe de scalaire (solution au pb du fléau de la dimension)
- Partenaires : CEA-UPVD

Chromatic analysis

Error analysis

Application en algèbre linéaire

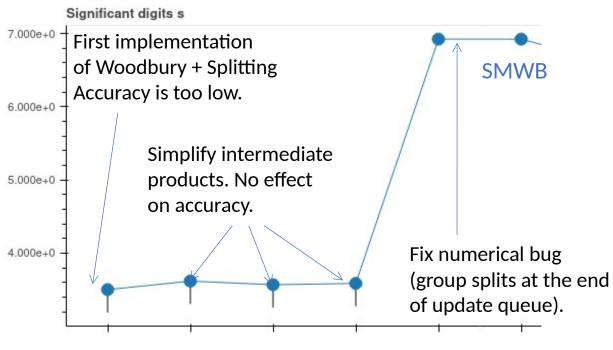
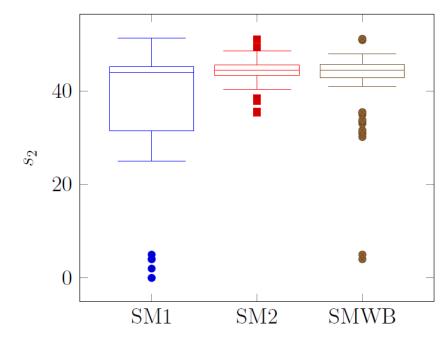

73773	73777	7377373777
	33377	7777333377
33373	73733	3337373733
77333	13377	7733313377
	77333	3337777333
	73753	3773773783
	33333	7777733333
	17337	7333317337
	73733	7777373733
31737	73737	3773773737

Fig. 2. Adversarial construction on MNIST dataset of 3s and 7s such that eacl example has a minimal number of pixels alterted to mislead the discrimination between the two sets among the ten classification bins.

Application en apprentissage


5.3 Visualisation: VFC-CI

Génération de rapports automatiques à chaque commit GIT.

Git commits (QMCkl - SMWB kernels)

Vues qui comparent différentes implémentations d'un même noyau.

Significant bits of three versions of the Sherman-Morrison kernel.

5.3 Visualisation : Outils de post-traitement

Outils intégrés à Verrou. Extensibles à d'autres frontends ?

- verrou_plot_stat
 - Génération automatique d'histogrammes
 - Même interface que l'interface ddebug
- post_verrou_dd : post-traiter des résultats de delta-debug avec
 - Un nombre différent de run
 - D'autres modes d'arrondi (format compatible avec verrou_plot_stat)
 - Avec une sélection des instructions (add,sub,....)
 - Avec la couverture par basic-bloc

Discussion

- Points oubliés / changements par rapport au projet initial ?
 - Localisation plus fine
 - Mutualisation des outils de post-traitement : delta-debug / visualisation ?

• Objectifs pour la dernière année ? Perspectives à plus long terme ?