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Today's floating-point landscape

Bits
Signif. (f/ Exp. Range u=2""
bfloatl6 B 8 8 10138  4x1073
fpl6 H 11 5  10%° 5x 1074

fpl28 Q 113 15 10!4932 1x 1073

e | ow precision increasingly supported by hardware
e Great benefits:

o Reduced storage, data movement, and communications

o Increased speed on emerging hardware (16 x on A100 from fp32
to fp16/bfloat16)

o Reduced energy consumption (5x with fp16, 9x with bfloat16)

e Some risks too:
o Low precision (large u)

o Narrow range
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Mixed precision algorithms

Mix several precisions in the same code with the goal of
e Gefting the performance benefits of low precisions

e While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, ...
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Mixed precision algorithms

Mix several precisions in the same code with the goal of
e Gefting the performance benefits of low precisions
e While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, ...

How to select the right precision for the right variable/operation
e Precision tuning: autotuning based on the source code

A Does not need any understanding of what the code does
V¥ Does not have any understanding of what the code does

e This work: exploit as much as possible the knowledge we have
about the code
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The AAA approach (1/3)
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Algorithm
Example: Ax =b
in p precisions ux, ...

» Up

ll




Iterative refinement

Factorize A = LU at low precision
Solve Ax; = b via x; = U~Y(L™1b)
repeat at high precision
r=b—Ax;
Solve Ad; = r;via d; = U~} (L™1r)
Xi+1 = X; + d;
until converged

e O(n?) flops at low precision, O(n?) flops per iteration at high
precision

e What guarantees of convergence? What does "low” and "high"
mean?
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The AAA approach (2/3)

Algorithm
Example: Ax =b
in p precisions ux, ...

» Up

ll




The AAA approach (2/3)
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Algorithm
Example: Ax =b
in p precisions uy,...,Up
II
Analysis

(A+AAR=b
[AA] < f(ut, ..., up)[|A]l
X = x|l < g(ur, .-, up)[I]

II




Error analysis of iterative refinement

Factorize A = LU at precision us
Solve Ax1 = b via x; = U™Y(L~!b) at precision us
repeat

ri = b — Ax; at precision u,

Solve Ad; = r; via d; = U™} (L™!r;) at precision u¢

Xi+1 = X; + d; at precision u
until converged

e Theorem from [3 Carson and Higham (2018) : provided that
Kk(A)us < 1, we reach X — x|| < (u+ us(A))|x||
= Up to 1(A) = O(103) for fp16 factorization
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Error analysis of iterative refinement

Factorize A = LU at precision us
Solve Ax1 = b via x; = U™Y(L~!b) at precision us
repeat
ri = b — Ax; at precision u,
Solve Ad; = r; with preconditioned GMRES
except matvecs at precision u,
Xi+1 = X; + d; at precision u
until converged

e Theorem from [3 Carson and Higham (2018) : provided that
Kk(A)us < 1, we reach X — x|| < (u+ us(A))|x||
= Up to 1(A) = O(103) for fp16 factorization

e Theorem from [3 Amestoy et al. (2021) : provided that
(v, + K(A)up)k(A)?us? < 1 we reach the same accuracy
= Up to x(A) = O(10*!) for fp16 factorization
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The AAA approach (3/3)

Algorithm
Example: Ax =b
in p precisions uy,...,Up
II
Analysis

(A+AAR=b
JAA] < f(ut, ..., up)[|A]l
X = x|l < g(ur, .-, up) ]

II




The AAA approach (3/3)
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Algorithm
Example: Ax =b
in p precisions uy,...,Up

Il

Analysis
(A+AAR=b
[AA| < fu, ... up) IA]]
% = xll < glus, .., up)llx]]

II

Application
Take into account any
special property of A in the
specific application at hand




Block low-rank (BLR) matrices

e BLR matrices arise in several
applications (PDEs, covariance
matrices, etc.)

double single
e Blocks are compressed with

U > low-rank approximations, e.g. via

HVT truncated SVD

£

Why does mixed precision work here ?
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https://hal.archives-ouvertes.fr/hal-03251738

Block low-rank (BLR) matrices

e BLR matrices arise in several
applications (PDEs, covariance
matrices, etc.)

e Blocks of norm less than ¢/u; can
be stored in precision u;

double single
e Blocks are compressed with

U > low-rank approximations, e.g. via
HVT truncated SVD
e Singular vectors associated with

singular values less than ¢/u; can
be stored in precision u;

e/us

£

Why does mixed precision work here ?

o/21 [2) Amestoy et al. (2021b)
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Data-driven adaptive precision algorithms

e Why can we store "less important” data in lower precision ?
Because small elements produce small errors :

| fl(a op b) — a op b| < ula op b, op € {+,—,*,+}

= Opportunity for mixed precision !

o BLR matrices [2) Amestoy et al. (2021b)  [2] Abdulah et al. (2021)
Low-rank approximations, SVD [3 Amestoy et al. (2021b)
Randomized SVD Connolly, Higham, and Pranesh (SIAM AN 20217)
Quantized dot product [3 Diffenderfer, Osei-Kuffuor, & Menon (2021)
SpMV  [8) Ahmad, Sundar and Hall (2020)

Multiword matrix multiplication [3] Fasi et al. (SIAM LA 2021)
Random matrix multiplication [3 Higham and Mary (2020)

Block Jacobi and SPAI preconditioners [8) Anzt et al. (2019)
Runge Kutta [3 Croci and de Souza (2021)

O O 0 0O 0O 0o O O
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Adaptive precision at the variable level ?

e Pushing adaptive precision to the extreme: can we benefit from
storing each variable in a (possibly) different precision?

e Same granularity as precision autotuning, but different method
to select precisions
e Example: Ax = b with adaptive precision for each A;
o lIs it worth it ?
Need to have elements of widely different magnitudes, and yet not
structured in any obvious way (by blocks or columns, etc.)
o lIs it practical ?
Probably not for compute-bound applications, but could it work
for ones?
= Natural candidate: sparse matrices
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Sparse matrix—vector product (SpMV)

y=Ax, A € R™*"
fori=1: mdo
yi=20
for j € nnz;(A) do
Yi =Y+ ajX;
end for
end for

e Standard backward error analysis: if y = Ax is performed in a
uniform precision €, we obtain

Wiyl <ne D lax]
jennzi(A)

¢ |dea: store elements of A in a precision inversely proportional

to their magnitude (smaller elements in lower precision)
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Adaptive precision SpMV

fori=1: mdo
yi=0
fork=1:pdo
v =0
for j € nnz;(A) do
if a;x; € Bi then
y,(k) = y,.(k) + ajx; at precision ux
end if
end for
yi=Yyi+ yr'(k)
end for
end for

e Split row i of A info p buckets Bjx and sum elements of Bj in
precision ug

e Backward error analysis: |S/\,.(k) —y,(k)| < ”r‘(k)UkZaijeB,»k |ajix]
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Building the buckets

~(k k k
¢ |y/( ) _y/'( )| < ni( )ukZaI/XJGBik ;|
= Build the buckets such that ukZa/‘ijeB,k la| = e Y layx|

e By setting Bjk to the interval (ef3;/uks1,£0/uk], we obtain
(K K K .
|)’,'( ) —)’,-( )| < ﬂ,‘( )55,‘ and so [y; — yi| < nief;

e Two possible choices for f§;:

o B =>_lajx| = guarantees O(e) backward error
o B = ||Allllx]| = guarantees O(e) backward error
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SpMV: experiments

Matrix: besstkO4
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S
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L
0%
(&) -
260 g
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Prescribed error

Results for x = (1,...,1)7
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SpMV: experiments

Matrix: meshlel
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SpMV: experiments

Matrix: arc130
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Results for x = (1,...,1)7
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SpMV: experiments

Matrix: lund_a
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SpMV: experiments

Matrix: plat362
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SpMV: experiments

Matrix: steam3
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SpMV: experiments

Matrix: mcca
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Role of vector x

e Critical issue: accuracy of SpMV depends on x, but not
practical fo change precision of A based on x

e Can still use it and cross fingers ...

e More promising avenue: use it in a setting where x is
guaranteed to be "nice”
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Role of vector x

e Critical issue: accuracy of SpMV depends on x, but not
practical fo change precision of A based on x

e Can still use it and cross fingers ...

e More promising avenue: use it in a setting where x is
guaranteed to be "nice”

r=b— Axog
B =llrll2
aq1=r/B
fork=1,2,...do
y = Agk
forj=1: k do
hix = qfy
y =y — hiq;
end for

Ptk = [IYll2
Ak+1 = y/hit1,k
Solve the least squares problem ming, ||Hex — Betll2
Xk = x0 + Qxck
end for

%/2? Krylov solvers! In GMRES, x is orthonormal



Application to GMRES: experimental setting

Difficulties in assessing the potential of adaptive precision for
GMRES:

e Highly matrix dependent, need to cover a wide range of
applications

e For a given matrix, hard to know what a good accuracy is
o What storage precision?
o What tolerance threshold for GMRES convergence?
o Normwise or componentwise stable SpMV?
We have both g < £(A)nom and 1rwg < cond(A)neny, where
cond(A) = [[[ATH]A]l < K(A) = [IA[I[IA~Y]
If cond(A) < k(A), componentwise stability may be critical
o How small should the forward error be?
e Comparison further muddled by possible use of
o Preconditioners
o lterative refinement (i.e., restarted GMRES)
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Application to GMRES: an example

* Results with matrix arc130 (n = 130, xk(A) = 1.2 x 102,
cond(A) = 2.2 x 10°)

e Use unpreconditioned unrestarted GMRES with A stored in
precision € and with convergence tolerance 7

e Compare three variants

o U: store A in uniform precision ¢
o AC: store A in adaptive precision with o0 = & (compwise stability)
o AN: store A in adaptive precision with noiM = € (normwise stability)
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Application to GMRES: an example

nrm

cmp

€ T Iter.  Cost (% U) Mowd Mowd Tfwd
AC AN U/AC/AN U/AC/AN U/AC/AN

10~ 15 57 37 10-16 10-10 10-°

275 10712 13 57 37 10713 107 1073
10-1 10 57 37 101 10-° 10-!
U/AC AN U/AC AN U/AC AN
10~ 15 50 28 107'¢ 107! 107 107 10=° 107!
2737 1072 13 50 28 1071 1071t 1077 1075 1073 107!
10~ 10 50 28 107 107 107% 1075 107! 107!
- 15 43 20 107'2 107 1077 107! 1072 102

2724 1072 13 43 20 1072 1077 1077 107% 1072 102
1071 10 43 20 107! 1077 107% 107! 107! 107

e Use of AC/AN does not increase iterations

e Both AC/AN achieve significant gains, AN more so

e As ¢ increases, U/AC become more accurate than AN

e As T increases, gap between U/AC and AN closes

= No clear winner
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Application to GMRES: an example

€ T Iter.  Cost (% U) Mowd Nowe, Tfwd

bwd
AC AN U/AC/AN U/AC/AN U/AC/AN
10-1% 15 57 37 10—16 10—10 10-5
2-5 10712 13 57 37 10-13 107 103
10-10 10 57 37 10-11 10-5 101
U/AC AN U/AC AN U/AC AN

10-1% 15 50 28 10-16  10-11 1079 107% 10=% 107!
2-37 10712 13 50 28 10-13 1011 107 107% 1073 107!
10— 10 50 28 10~ 10~ 105 107> 10°! 10!

10-1% 15 43 20 10-12 107 1077 107! 1072 102
2-24 10712 13 43 20 10712 107 1007 107! 1072 102
10-10 10 43 20 10—t 107 10-5 107! 1071 102

o If target Ny = 107°:
o AN costs 53 x 15 x 37, AC costs 37 x 15 x 50
= Similar cost, both about 50% better than U
o If target 1uq = 1071
o AN costs 37 x 10 x 28, AC costs 24 x 10 x 43

= Similar cost, both about 57% better than U
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Application to GMRES: results on real-life matrices

Cost wrt U (%)

Matrices

* Results on 659 SuiteSparse matrices of order n € [100, 5000]

e Keep only matrices for which AC (¢ = 27%3) achieves some gain

(7T0% of the matrices)
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Conclusion: take-home messages

e The AAA approach:

o Tailor the use of mixed precision to a specific algorithm class
o Use error analysis as a guide to choose the precisions
o Adapt precisions to the data at hand

e |llustration of this methodology for NLA
o Adaptive precision SpMV
o Application to Krylov solvers: significant reductions of the data
movement at equivalent accuracy
o Article in preparation

Thank you! Any questions?
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