InterFLOP Meeting

6 October 2021

Adaptive Precision Sparse Matrix-Vector Product and its Application to Krylov Solvers

Theo Mary

Sorbonne Université, CNRS, LIP6

Joint work with

Stef Graillat, Fabienne Jézéquel, and Roméo Molina

Today's floating-point landscape

		Bits			
		Signif. (†)	Exp.	Range	$u = 2^{-t}$
bfloat16	В	8	8	$10^{\pm 38}$	4×10^{-3}
fp16	Н	11	5	$10^{\pm 5}$	5×10^{-4}
fp32	S	24	8	$10^{\pm 38}$	6×10^{-8}
fp64	D	53	11	$10^{\pm 308}$	1×10^{-16}
fp128	Q	113	15	$10^{\pm 4932}$	1×10^{-34}

• Low precision increasingly supported by hardware

• Great benefits:

- Reduced storage, data movement, and communications
- Increased **speed** on emerging hardware (16× on A100 from fp32 to fp16/bfloat16)
- $\circ~$ Reduced energy consumption (5× with fp16, 9× with bfloat16)

• Some risks too:

- Low precision (large *u*)
- Narrow range

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, ...

Mix several precisions in the same code with the goal of

- Getting the performance benefits of low precisions
- While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive precision, Variable precision, Transprecision, Dynamic precision, ...

How to select the right precision for the right variable/operation

- Precision tuning: autotuning based on the source code
 - Does not need any understanding of what the code does
 - Does not have any understanding of what the code does
- This work: exploit as much as possible the knowledge we have about the code

The AAA approach (1/3)

Factorize A = LU at low precision Solve $Ax_1 = b$ via $x_1 = U^{-1}(L^{-1}b)$ repeat at high precision $r_i = b - Ax_i$ Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ $x_{i+1} = x_i + d_i$ until converged

- $O(n^3)$ flops at low precision, $O(n^2)$ flops per iteration at high precision
- What guarantees of convergence? What does "low" and "high" mean?

The AAA approach (2/3)

The AAA approach (2/3)

Error analysis of iterative refinement

Factorize A = LU at precision u_f Solve $Ax_1 = b$ via $x_1 = U^{-1}(L^{-1}b)$ at precision u_f repeat $r_i = b - Ax_i$ at precision u_r Solve $Ad_i = r_i$ via $d_i = U^{-1}(L^{-1}r_i)$ at precision u_f $x_{i+1} = x_i + d_i$ at precision u until converged

• Theorem from Carson and Higham (2018) : provided that $\kappa(A)\mathbf{u_f} < 1$, we reach $\|\widehat{x} - x\| \leq (\mathbf{u} + \mathbf{u_r}\kappa(A))\|x\|$ \Rightarrow Up to $\kappa(A) = O(10^3)$ for fp16 factorization Factorize A = LU at precision u_f Solve $Ax_1 = b$ via $x_1 = U^{-1}(L^{-1}b)$ at precision u_f repeat $r_i = b - Ax_i$ at precision u_r Solve $Ad_i = r_i$ with preconditioned GMRES at precision u_g except matvecs at precision u_p $x_{i+1} = x_i + d_i$ at precision u until converged

- Theorem from Carson and Higham (2018) : provided that $\kappa(A)\mathbf{u_f} < 1$, we reach $\|\widehat{x} x\| \leq (\mathbf{u} + \mathbf{u_r}\kappa(A))\|x\|$ \Rightarrow Up to $\kappa(A) = O(10^3)$ for fp16 factorization
- Theorem from Density Amestoy et al. (2021) : provided that $(\mathbf{u_g} + \kappa(A)\mathbf{u_p})\kappa(A)^2\mathbf{u_f}^2 < 1$ we reach the same accuracy \Rightarrow Up to $\kappa(A) = O(10^{11})$ for fp16 factorization

The AAA approach (3/3)

The AAA approach (3/3)

Block low-rank (BLR) matrices

double single half

 BLR matrices arise in several applications (PDEs, covariance matrices, etc.)

 Blocks are compressed with low-rank approximations, e.g. via truncated SVD

Why does mixed precision work here?

Block low-rank (BLR) matrices

double single half

- BLR matrices arise in several applications (PDEs, covariance matrices, etc.)
- Blocks of norm less than ε/u_i can be stored in precision u_i

- Blocks are compressed with low-rank approximations, e.g. via truncated SVD
- Singular vectors associated with singular values less than ε/u_i can be stored in precision u_i

Why does mixed precision work here ?

Amestoy et al. (2021b)

Data-driven adaptive precision algorithms

• Why can we store "less important" data in lower precision ? Because small elements produce small errors :

 $|\operatorname{fl}(\operatorname{a}\operatorname{op} b) - \operatorname{a}\operatorname{op} b| \le u|\operatorname{a}\operatorname{op} b|, \quad \operatorname{op} \in \{+, -, *, \div\}$

\Rightarrow Opportunity for mixed precision !

- BLR matrices 🖹 Amestoy et al. (2021b) 📑 Abdulah et al. (2021)
- Low-rank approximations, SVD ☐ Amestoy et al. (2021b)
- Randomized SVD Connolly, Higham, and Pranesh (SIAM AN 2021)
- Quantized dot product 🕒 Diffenderfer, Osei-Kuffuor, & Menon (2021)
- SpMV ☐ Ahmad, Sundar and Hall (2020)
- Multiword matrix multiplication 🗎 Fasi et al. (SIAM LA 2021)
- Block Jacobi and SPAI preconditioners 🖹 Anzt et al. (2019)
- Runge Kutta 🖹 Croci and de Souza (2021)

Adaptive precision at the variable level ?

- Pushing adaptive precision to the extreme: can we benefit from storing **each variable** in a (possibly) different precision?
- Same granularity as precision autotuning, but different method to select precisions
- Example: Ax = b with adaptive precision for each A_{ij}
 - Is it worth it ?

Need to have elements of widely different magnitudes, and yet not structured in any obvious way (by blocks or columns, etc.)

• Is it practical ?

Probably not for compute-bound applications, but could it work for memory-bound ones?

⇒ Natural candidate: **sparse matrices**

Sparse matrix-vector product (SpMV)

• Standard backward error analysis: if y = Ax is performed in a uniform precision ε , we obtain

$$|\hat{y}_i - y_i| \le n_i \varepsilon \sum_{j \in nnz_i(A)} |a_{ij}x_j|$$

• **Idea:** store elements of A in a precision inversely proportional to their magnitude (smaller elements in lower precision)

Adaptive precision SpMV

for i = 1: m do $y_i = 0$ for k = 1: p do $y_i^{(k)} = 0$ for $j \in nnz_i(A)$ do if $a_{ij}x_j \in B_{ik}$ then $y_i^{(k)} = y_i^{(k)} + a_{ij}x_j$ at precision u_k end if end for $y_i = y_i + y_i^{(k)}$ end for end for

- Split row i of A into p buckets B_{ik} and sum elements of B_{ik} in precision u_k
- Backward error analysis: $|\widehat{y}_i^{(k)} y_i^{(k)}| \le n_i^{(k)} u_k \sum_{a_{ij} x_j \in B_{ik}} |a_{ij} x_j|$

Building the buckets

•
$$|\hat{y}_{i}^{(k)} - y_{i}^{(k)}| \le n_{i}^{(k)} u_{k} \sum_{a_{ij} x_{j} \in B_{ik}} |a_{ij} x_{j}|$$

 \Rightarrow Build the buckets such that $u_k \sum_{a_{ij}x_j \in B_{ik}} |a_{ij}x_j| \approx \varepsilon \sum_j |a_{ij}x_j|$

- By setting B_{ik} to the interval $(\varepsilon \beta_i / u_{k+1}, \varepsilon \beta_i / u_k]$, we obtain $|\widehat{y}_i^{(k)} y_i^{(k)}| \le n_i^{(k)} \varepsilon \beta_i$ and so $|\widehat{y}_i y_i| \le n_i \varepsilon \beta_i$
- Two possible choices for β_i :

• $\beta_i = \sum_j |\mathbf{a}_{ij} \mathbf{x}_j| \Rightarrow$ guarantees $O(\varepsilon)$ componentwise backward error • $\beta_i = ||\mathbf{A}|| ||\mathbf{x}|| \Rightarrow$ guarantees $O(\varepsilon)$ normwise backward error

Role of vector x

- Critical issue: accuracy of SpMV depends on *x*, but not practical to change precision of A based on *x*
- Can still use it and cross fingers ...
- More promising avenue: use it in a setting where x is guaranteed to be "nice"

Role of vector x

- Critical issue: accuracy of SpMV depends on *x*, but not practical to change precision of *A* based on *x*
- Can still use it and cross fingers ...
- More promising avenue: use it in a setting where x is guaranteed to be "nice"

```
\begin{split} r &= b - Ax_0 \\ \beta &= \|r\|_2 \\ q_1 &= r/\beta \\ \text{for } k &= 1, 2, \dots \text{ do} \\ y &= Aq_k \\ \text{for } j &= 1: k \text{ do} \\ h_{jk} &= q_j^T y \\ y &= y - h_{jk}q_j \\ \text{end for} \\ h_{k+1,k} &= \|y\|_2 \\ q_{k+1} &= y/h_{k+1,k} \\ \text{Solve the least squares problem } \min_{c_k} \|Hc_k - \beta e_1\|_2 \\ x_k &= x_0 + Q_k c_k \\ \text{end for} \end{split}
```

\Rightarrow Krylov solvers! In GMRES, x is orthonormal

Difficulties in assessing the potential of adaptive precision for GMRES:

- **Highly matrix dependent**, need to cover a wide range of applications
- For a given matrix, hard to know what a good accuracy is
 - What storage precision?
 - What tolerance threshold for GMRES convergence?
 - Normwise or componentwise stable SpMV? We have both $\eta_{\text{fwd}} \leq \kappa(A)\eta_{\text{bwd}}^{\text{nrm}}$ and $\eta_{\text{fwd}} \leq \text{cond}(A)\eta_{\text{bwd}}^{\text{cmp}}$, where $\text{cond}(A) = \||A^{-1}||A|\| \leq \kappa(A) = \|A\|\|A^{-1}\|$ If $\text{cond}(A) \ll \kappa(A)$, componentwise stability may be critical
 - How small should the forward error be?
- Comparison further muddled by possible use of
 - Preconditioners
 - Iterative refinement (i.e., restarted GMRES)

- Results with matrix arc130 (n = 130, $\kappa(A) = 1.2 \times 10^{12}$, $\operatorname{cond}(A) = 2.2 \times 10^{6}$)
- Use unpreconditioned unrestarted GMRES with A stored in precision ε and with convergence tolerance τ
- Compare three variants
 - $\circ~$ U: store A in uniform precision arepsilon
 - AC: store A in adaptive precision with $\eta_{bwd}^{cmp} = \varepsilon$ (compwise stability)
 - \circ AN: store A in adaptive precision with $\eta_{
 m bwd}^{
 m nrm} = arepsilon$ (normwise stability)

Application to GMRES: an example

ε	τ	lter.	Cost AC	(% U) AN	$\eta_{ m bwd}^{ m nrm}$ U/AC/AN		$\eta_{\sf bwd}^{\sf cmp}$ U/AC/AN		η_{fwd} U/AC/AN	
2^{-53}	$ 10^{-14} \\ 10^{-12} \\ 10^{-10} $	15 13 10	57 57 57	37 37 37	$ \begin{array}{r} 10^{-16} \\ 10^{-13} \\ 10^{-11} \\ \end{array} $		$ \begin{array}{r} 10^{-10} \\ 10^{-7} \\ 10^{-5} \end{array} $		$ \begin{array}{r} 10^{-5} \\ 10^{-3} \\ 10^{-1} \end{array} $	
					U/AC	AN	U/AC	AN	U/AC	AN
2^{-37}	10^{-14} 10^{-12} 10^{-10}	15 13 10	50 50 50	28 28 28	10^{-16} 10^{-13} 10^{-11}	10^{-11} 10^{-11} 10^{-11}	10^{-9} 10^{-7} 10^{-5}	10^{-5} 10^{-5} 10^{-5}	10^{-5} 10^{-3} 10^{-1}	10^{-1} 10^{-1} 10^{-1}
2^{-24}	$ \begin{array}{c} 10^{-14} \\ 10^{-12} \\ 10^{-10} \end{array} $	15 13 10	43 43 43	20 20 20	$ \begin{array}{c} 10^{-12} \\ 10^{-12} \\ 10^{-11} \end{array} $	$ \begin{array}{r} 10^{-7} \\ 10^{-7} \\ 10^{-7} \end{array} $	10^{-7} 10^{-7} 10^{-5}	$ \begin{array}{r} 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ \end{array} $	$ \begin{array}{r} 10^{-2} \\ 10^{-2} \\ 10^{-1} \end{array} $	$ \begin{array}{r} 10^2 \\ 10^2 \\ 10^2 \end{array} $

- Use of AC/AN does not increase iterations
- Both AC/AN achieve significant gains, AN more so
- As arepsilon increases, U/AC become more accurate than AN
- As τ increases, gap between U/AC and AN closes

\Rightarrow No clear winner

Application to GMRES: an example

ε	τ	lter.	Cost AC	(% U) AN	$\eta^{\sf r}_{\sf b}$ U/AG	orm owd C/AN	$\eta_{\sf bwd}^{\sf cmp}$ U/AC/AN		η_{fwd} U/AC/AN	
2^{-53}	$ \begin{array}{r} 10^{-14} \\ 10^{-12} \\ 10^{-10} \end{array} $	15 13 10	57 57 57	37 37 37	$ \begin{array}{r} 10^{-16} \\ 10^{-13} \\ 10^{-11} \\ \end{array} $		10^{-10} 10^{-7} 10^{-5}		10^{-5} 10^{-3} 10^{-1}	
					U/AC	AN	U/AC	AN	U/AC	AN
2^{-37}	$10^{-14} \\ 10^{-12} \\ 10^{-10}$	15 13 10	50 50 50	28 28 28	10^{-16} 10^{-13} 10^{-11}	10^{-11} 10^{-11} 10^{-11}	10^{-9} 10^{-7} 10^{-5}	10^{-5} 10^{-5} 10^{-5}	10^{-5} 10^{-3} 10^{-1}	10^{-1} 10^{-1} 10^{-1}
2^{-24}	$ \begin{array}{c} 10^{-14} \\ 10^{-12} \\ 10^{-10} \end{array} $	15 13 10	43 43 43	20 20 20	$ \begin{array}{c} 10^{-12} \\ 10^{-12} \\ 10^{-11} \end{array} $	$ \begin{array}{r} 10^{-7} \\ 10^{-7} \\ 10^{-7} \end{array} $	10^{-7} 10^{-7} 10^{-5}	$ \begin{array}{r} 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ 10^{-1} \\ \end{array} $	10^{-2} 10^{-2} 10^{-1}	$ \begin{array}{r} 10^2 \\ 10^2 \\ 10^2 \end{array} $

• If target $\eta_{\text{fwd}} = 10^{-5}$:

- $\circ~$ AN costs $53\times15\times37$, AC costs $37\times15\times50$
- \Rightarrow Similar cost, both about 50% better than U
- If target $\eta_{\text{fwd}} = 10^{-1}$:
 - $\circ~$ AN costs $37\times10\times28$, AC costs $24\times10\times43$
 - \Rightarrow Similar cost, both about 57% better than U

Application to GMRES: results on real-life matrices

- Results on 659 SuiteSparse matrices of order $n \in [100, 5000]$
- Keep only matrices for which AC ($\varepsilon = 2^{-53}$) achieves some gain (70% of the matrices)

Conclusion: take-home messages

- The AAA approach:
 - $\circ\;$ Tailor the use of mixed precision to a specific algorithm class
 - Use error analysis as a guide to choose the precisions
 - Adapt precisions to the data at hand

- Illustration of this methodology for NLA
 - Adaptive precision SpMV
 - Application to Krylov solvers: significant reductions of the data movement at equivalent accuracy
 - Article in preparation

Thank you! Any questions?