
InterFLOP Meeting
6 October 2021

Adaptive Precision Sparse Matrix–Vector Product
and its Application to Krylov Solvers

Theo Mary
Sorbonne Université, CNRS, LIP6

Joint work with
Stef Graillat, Fabienne Jézéquel, and Roméo Molina

1/21

Today’s floating-point landscape

Bits
Signif. (t) Exp. Range u = 2−t

bfloat16 B 8 8 10±38 4× 10−3

fp16 H 11 5 10±5 5× 10−4

fp32 S 24 8 10±38 6× 10−8

fp64 D 53 11 10±308 1× 10−16

fp128 Q 113 15 10±4932 1× 10−34

• Low precision increasingly supported by hardware
• Great benefits:

◦ Reduced storage, data movement, and communications
◦ Increased speed on emerging hardware (16× on A100 from fp32

to fp16/bfloat16)
◦ Reduced energy consumption (5× with fp16, 9× with bfloat16)

• Some risks too:
◦ Low precision (large u)
◦ Narrow range

2/21

Mixed precision algorithms

Mix several precisions in the same code with the goal of
• Getting the performance benefits of low precisions
• While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, …

How to select the right precision for the right variable/operation
• Precision tuning: autotuning based on the source code

▲ Does not need any understanding of what the code does

▼ Does not have any understanding of what the code does

• This work: exploit as much as possible the knowledge we have
about the code

3/21

Mixed precision algorithms

Mix several precisions in the same code with the goal of
• Getting the performance benefits of low precisions
• While preserving the accuracy and stability of the high precision

Terminology varies: Mixed precision, Multiprecision, Adaptive
precision, Variable precision, Transprecision, Dynamic precision, …

How to select the right precision for the right variable/operation
• Precision tuning: autotuning based on the source code

▲ Does not need any understanding of what the code does
▼ Does not have any understanding of what the code does

• This work: exploit as much as possible the knowledge we have
about the code

3/21

The AAA approach (1/3)

Algorithm
Example: Ax = b

in p precisions u1, . . . ,up

4/21

Iterative refinement

Factorize A = LU at low precision
Solve Ax1 = b via x1 = U−1(L−1b)
repeat at high precision

ri = b− Axi
Solve Adi = ri via di = U−1(L−1ri)
xi+1 = xi + di

until converged

• O(n3) flops at low precision, O(n2) flops per iteration at high
precision

• What guarantees of convergence? What does “low” and “high”
mean?

5/21

The AAA approach (2/3)

Algorithm
Example: Ax = b

in p precisions u1, . . . ,up

Analysis
(A+∆A)x̂ = b

∥∆A∥ ≤ f(u1, . . . ,up)∥A∥
∥x̂− x∥ ≤ g(u1, . . . ,up)∥x∥

6/21

The AAA approach (2/3)

Algorithm
Example: Ax = b

in p precisions u1, . . . ,up

Analysis
(A+∆A)x̂ = b

∥∆A∥ ≤ f(u1, . . . ,up)∥A∥
∥x̂− x∥ ≤ g(u1, . . . ,up)∥x∥

6/21

Error analysis of iterative refinement

Factorize A = LU at precision uf
Solve Ax1 = b via x1 = U−1(L−1b) at precision uf
repeat

ri = b− Axi at precision ur
Solve Adi = ri via di = U−1(L−1ri) at precision uf

xi+1 = xi + di at precision u
until converged

• Theorem from Carson and Higham (2018) : provided that
κ(A)uf < 1, we reach ∥x̂− x∥ ≤ (u+ urκ(A))∥x∥
⇒ Up to κ(A) = O(103) for fp16 factorization

• Theorem from Amestoy et al. (2021) : provided that
(ug + κ(A)up)κ(A)2uf

2 < 1 we reach the same accuracy
⇒ Up to κ(A) = O(1011) for fp16 factorization

7/21

https://epubs.siam.org/doi/abs/10.1137/17M1140819
https://hal.archives-ouvertes.fr/hal-03190686

Error analysis of iterative refinement

Factorize A = LU at precision uf
Solve Ax1 = b via x1 = U−1(L−1b) at precision uf
repeat

ri = b− Axi at precision ur
Solve Adi = ri with preconditioned GMRES

at precision ug except matvecs at precision up
xi+1 = xi + di at precision u

until converged

• Theorem from Carson and Higham (2018) : provided that
κ(A)uf < 1, we reach ∥x̂− x∥ ≤ (u+ urκ(A))∥x∥
⇒ Up to κ(A) = O(103) for fp16 factorization

• Theorem from Amestoy et al. (2021) : provided that
(ug + κ(A)up)κ(A)2uf

2 < 1 we reach the same accuracy
⇒ Up to κ(A) = O(1011) for fp16 factorization

7/21

https://epubs.siam.org/doi/abs/10.1137/17M1140819
https://hal.archives-ouvertes.fr/hal-03190686

The AAA approach (3/3)

Algorithm
Example: Ax = b

in p precisions u1, . . . ,up

Analysis
(A+∆A)x̂ = b

∥∆A∥ ≤ f(u1, . . . ,up)∥A∥
∥x̂− x∥ ≤ g(u1, . . . ,up)∥x∥

Application
Take into account any

special property of A in the
specific application at hand

8/21

The AAA approach (3/3)

Algorithm
Example: Ax = b

in p precisions u1, . . . ,up

Analysis
(A+∆A)x̂ = b

∥∆A∥ ≤ f(u1, . . . ,up)∥A∥
∥x̂− x∥ ≤ g(u1, . . . ,up)∥x∥

Application
Take into account any

special property of A in the
specific application at hand

8/21

Block low-rank (BLR) matrices

double single half

• BLR matrices arise in several
applications (PDEs, covariance
matrices, etc.)

• Blocks of norm less than ε/ui can
be stored in precision ui

U

VT

Σ

ε

ε/us

ε/uh

• Blocks are compressed with
low-rank approximations, e.g. via
truncated SVD

• Singular vectors associated with
singular values less than ε/ui can
be stored in precision ui

Why does mixed precision work here ?

 Amestoy et al. (2021b)

9/21

https://hal.archives-ouvertes.fr/hal-03251738

Block low-rank (BLR) matrices

double single half

• BLR matrices arise in several
applications (PDEs, covariance
matrices, etc.)

• Blocks of norm less than ε/ui can
be stored in precision ui

U

VT

Σ

ε

ε/us

ε/uh

• Blocks are compressed with
low-rank approximations, e.g. via
truncated SVD

• Singular vectors associated with
singular values less than ε/ui can
be stored in precision ui

Why does mixed precision work here ?
 Amestoy et al. (2021b)

9/21

https://hal.archives-ouvertes.fr/hal-03251738

Data-driven adaptive precision algorithms

• Why can we store “less important” data in lower precision ?
Because small elements produce small errors :

| fl(a op b)− a op b| ≤ u|a op b|, op ∈ {+,−, ∗,÷}

⇒ Opportunity for mixed precision !
◦ BLR matrices Amestoy et al. (2021b) Abdulah et al. (2021)
◦ Low-rank approximations, SVD Amestoy et al. (2021b)
◦ Randomized SVD Connolly, Higham, and Pranesh (SIAM AN 2021)
◦ Quantized dot product Diffenderfer, Osei-Kuffuor, & Menon (2021)
◦ SpMV Ahmad, Sundar and Hall (2020)
◦ Multiword matrix multiplication Fasi et al. (SIAM LA 2021)
◦ Random matrix multiplication Higham and Mary (2020)
◦ Block Jacobi and SPAI preconditioners Anzt et al. (2019)
◦ Runge Kutta Croci and de Souza (2021)

10/21

https://hal.archives-ouvertes.fr/hal-03251738
https://ieeexplore.ieee.org/abstract/document/9442267
https://hal.archives-ouvertes.fr/hal-03251738
https://arxiv.org/abs/2105.00115
https://dl.acm.org/doi/abs/10.1145/3371275
https://epubs.siam.org/doi/abs/10.1137/20M1314355
https://onlinelibrary.wiley.com/doi/full/10.1002/cpe.4460
https://arxiv.org/abs/2109.12153

Adaptive precision at the variable level ?

• Pushing adaptive precision to the extreme: can we benefit from
storing each variable in a (possibly) different precision?

• Same granularity as precision autotuning, but different method
to select precisions

• Example: Ax = b with adaptive precision for each Aij
◦ Is it worth it ?

Need to have elements of widely different magnitudes, and yet not
structured in any obvious way (by blocks or columns, etc.)

◦ Is it practical ?
Probably not for compute-bound applications, but could it work
for memory-bound ones?

⇒ Natural candidate: sparse matrices

11/21

Sparse matrix–vector product (SpMV)

y = Ax, A ∈ Rm×n

for i = 1: m do
yi = 0
for j ∈ nnzi(A) do

yi = yi + aijxj
end for

end for

• Standard backward error analysis: if y = Ax is performed in a
uniform precision ε, we obtain

|̂yi − yi| ≤ niε
∑

j∈nnzi(A)

|aijxj|

• Idea: store elements of A in a precision inversely proportional
to their magnitude (smaller elements in lower precision)

12/21

Adaptive precision SpMV

for i = 1: m do
yi = 0
for k = 1: p do

y(k)i = 0
for j ∈ nnzi(A) do

if aijxj ∈ Bik then
y(k)i = y(k)i + aijxj at precision uk

end if
end for
yi = yi + y(k)i

end for
end for

• Split row i of A into p buckets Bik and sum elements of Bik in
precision uk

• Backward error analysis: |̂y(k)i − y(k)i | ≤ n(k)i uk
∑

aijxj∈Bik |aijxj|

13/21

Building the buckets

• |̂y(k)i − y(k)i | ≤ n(k)i uk
∑

aijxj∈Bik |aijxj|

⇒ Build the buckets such that uk
∑

aijxj∈Bik |aijxj| ≈ ε
∑

j |aijxj|

• By setting Bik to the interval (εβi/uk+1, εβi/uk], we obtain
|̂y(k)i − y(k)i | ≤ n(k)i εβi and so |̂yi − yi| ≤ niεβi

• Two possible choices for βi:
◦ βi =

∑
j |aijxj| ⇒ guarantees O(ε) componentwise backward error

◦ βi = ∥A∥∥x∥ ⇒ guarantees O(ε) normwise backward error

14/21

SpMV: experiments

Matrix: bcsstk04

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

Results for x = (1, . . . , 1)T

15/21

SpMV: experiments

Matrix: mesh1e1

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

Results for x = (1, . . . , 1)T

15/21

SpMV: experiments

Matrix: arc130

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

Results for x = (1, . . . , 1)T

15/21

SpMV: experiments

Matrix: lund_a

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

Results for x = (1, . . . , 1)T

15/21

SpMV: experiments

Matrix: plat362

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

Results for x = (1, . . . , 1)T

15/21

SpMV: experiments

Matrix: steam3

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

Results for x = (1, . . . , 1)T

15/21

SpMV: experiments

Matrix: mcca

10
-15

10
-10

10
-5

10
0

0

20

40

60

80

100

10
-15

10
-10

10
-5

10
0

Results for x = (1, . . . , 1)T

15/21

Role of vector x

• Critical issue: accuracy of SpMV depends on x, but not
practical to change precision of A based on x

• Can still use it and cross fingers …
• More promising avenue: use it in a setting where x is
guaranteed to be “nice”

r = b− Ax0
β = ∥r∥2
q1 = r/β
for k = 1, 2, . . . do

y = Aqk
for j = 1: k do

hjk = qTj y
y = y− hjkqj

end for
hk+1,k = ∥y∥2
qk+1 = y/hk+1,k
Solve the least squares problem minck ∥Hck − βe1∥2
xk = x0 +Qkck

end for

⇒ Krylov solvers! In GMRES, x is orthonormal

16/21

Role of vector x

• Critical issue: accuracy of SpMV depends on x, but not
practical to change precision of A based on x

• Can still use it and cross fingers …
• More promising avenue: use it in a setting where x is
guaranteed to be “nice”

r = b− Ax0
β = ∥r∥2
q1 = r/β
for k = 1, 2, . . . do

y = Aqk
for j = 1: k do

hjk = qTj y
y = y− hjkqj

end for
hk+1,k = ∥y∥2
qk+1 = y/hk+1,k
Solve the least squares problem minck ∥Hck − βe1∥2
xk = x0 +Qkck

end for

⇒ Krylov solvers! In GMRES, x is orthonormal
16/21

Application to GMRES: experimental setting

Difficulties in assessing the potential of adaptive precision for
GMRES:
• Highly matrix dependent, need to cover a wide range of
applications

• For a given matrix, hard to know what a good accuracy is
◦ What storage precision?
◦ What tolerance threshold for GMRES convergence?
◦ Normwise or componentwise stable SpMV?

We have both ηfwd ≤ κ(A)ηnrmbwd and ηfwd ≤ cond(A)ηcmp
bwd , where

cond(A) = ∥|A−1||A|∥ ≤ κ(A) = ∥A∥∥A−1∥
If cond(A) ≪ κ(A), componentwise stability may be critical

◦ How small should the forward error be?
• Comparison further muddled by possible use of

◦ Preconditioners
◦ Iterative refinement (i.e., restarted GMRES)

17/21

Application to GMRES: an example

• Results with matrix arc130 (n = 130, κ(A) = 1.2× 1012,
cond(A) = 2.2× 106)

• Use unpreconditioned unrestarted GMRES with A stored in
precision ε and with convergence tolerance τ

• Compare three variants
◦ U: store A in uniform precision ε
◦ AC: store A in adaptive precision with ηcmp

bwd = ε (compwise stability)
◦ AN: store A in adaptive precision with ηnrmbwd = ε (normwise stability)

18/21

Application to GMRES: an example

ε τ Iter. Cost (% U) ηnrmbwd ηcmp
bwd ηfwd

AC AN U/AC/AN U/AC/AN U/AC/AN

2−53
10−14 15 57 37 10−16 10−10 10−5

10−12 13 57 37 10−13 10−7 10−3

10−10 10 57 37 10−11 10−5 10−1

U/AC AN U/AC AN U/AC AN

2−37
10−14 15 50 28 10−16 10−11 10−9 10−5 10−5 10−1

10−12 13 50 28 10−13 10−11 10−7 10−5 10−3 10−1

10−10 10 50 28 10−11 10−11 10−5 10−5 10−1 10−1

2−24
10−14 15 43 20 10−12 10−7 10−7 10−1 10−2 102

10−12 13 43 20 10−12 10−7 10−7 10−1 10−2 102

10−10 10 43 20 10−11 10−7 10−5 10−1 10−1 102

• Use of AC/AN does not increase iterations
• Both AC/AN achieve significant gains, AN more so
• As ε increases, U/AC become more accurate than AN
• As τ increases, gap between U/AC and AN closes

⇒ No clear winner
19/21

Application to GMRES: an example

ε τ Iter. Cost (% U) ηnrmbwd ηcmp
bwd ηfwd

AC AN U/AC/AN U/AC/AN U/AC/AN

2−53
10−14 15 57 37 10−16 10−10 10−5

10−12 13 57 37 10−13 10−7 10−3

10−10 10 57 37 10−11 10−5 10−1

U/AC AN U/AC AN U/AC AN

2−37
10−14 15 50 28 10−16 10−11 10−9 10−5 10−5 10−1

10−12 13 50 28 10−13 10−11 10−7 10−5 10−3 10−1

10−10 10 50 28 10−11 10−11 10−5 10−5 10−1 10−1

2−24
10−14 15 43 20 10−12 10−7 10−7 10−1 10−2 102

10−12 13 43 20 10−12 10−7 10−7 10−1 10−2 102

10−10 10 43 20 10−11 10−7 10−5 10−1 10−1 102

• If target ηfwd = 10−5:
◦ AN costs 53× 15× 37, AC costs 37× 15× 50

⇒ Similar cost, both about 50% better than U
• If target ηfwd = 10−1:

◦ AN costs 37× 10× 28, AC costs 24× 10× 43
⇒ Similar cost, both about 57% better than U

19/21

Application to GMRES: results on real-life matrices

0

20

40

60

80

100

• Results on 659 SuiteSparse matrices of order n ∈ [100, 5000]

• Keep only matrices for which AC (ε = 2−53) achieves some gain
(70% of the matrices)

20/21

Conclusion: take-home messages

• The AAA approach:
◦ Tailor the use of mixed precision to a specific algorithm class
◦ Use error analysis as a guide to choose the precisions
◦ Adapt precisions to the data at hand

• Illustration of this methodology for NLA
◦ Adaptive precision SpMV
◦ Application to Krylov solvers: significant reductions of the data

movement at equivalent accuracy
◦ Article in preparation

Thank you! Any questions?

21/21

