
INTERFLOP - UNISIM-VP – ARM FRONT-END

October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

| 2October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

armv8

| 3October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

• 4 objectives from sound to … less sound

• Enhance numerical analysis capabilities of our simulators (INTERFLOP)

• Tackle numerical stability in artificial intelligence algorithms

• Tackle numerical problems in representative embedded systems

• Tackle GPU simulation and modeling

• Means to do it

• Start a new ARMv8 simulator

• Make it capable of running a full linux distro (+ Keras + TF + OpenCL)

• Retain all previous UNISIM-VP instrumentation capabilities

• Provide the optimal instruction floating-point description

• Efficient Simulation

• Flexible Instrumentation

• Optimize Code factorization

HOW DID WE GET HERE ?

| 4October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

OUTLINE

UNISIM-VP Quick Overview

Pre-Existing instrumentation capabilities

On-going work & FP instrumentations

| 5October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

• Electronic Systems Virtualization
• Hardware design exploration

• Test bench virtualization

• Interoperability

• Resource optimization

• Instrumentation

• Sandboxing (cybersecurity)

• Reusing common tools for V&V, safety and cybersecurity

• Decrease development costs

• Increase confidence

UNISIM-VP QUICK OVERVIEW

T
a
rg

e
t

S
W

M
o

d
e

l

CPU CPU

BUS

MEM IO

Target CPU

Simulator

T
a
rg

e
t

H
W

■ Program outputs

■ Non-functional stats

| 6October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

Models and simulators are critical tools for designing and testing and
validating electronic and cyber-physical systems.

Requirements Specification

HW/SW interface

HW prototyping SW development

VIRTUAL

PLATFORM

R
e
fi
n
e
m

e
n
t

A
s
s
e
m

e
n
t

Developing, using

and shipping virtual

platforms for more

than 20 years

Our virtual platforms are

primarily designed to

help CPS software

developers

UNISIM-VP QUICK OVERVIEW

| 7October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

Software

Validation

Services

Hardware

Components

Models

Third Party

Tools

Interfaces

■ Debug & Profile

■ Fuzzing, µExec

■ Code Sanitizing

Virtualization

Technologies

GNU GDB■ SoCs & Boards

■ Processor models

■ Simulation standards

■ OS emulation

■ Binary Translation

RTOS*

http://unisim-vp.org

W
h
a
t
w

e
 d

e
v
e
lo

p
W

h
a
t

w
e
 w

a
n
t

Tools for software development
▪ Early prototyping and debug

▪ Verification and validation

▪ Maintenance and Monitoring

Tools for code analysis
▪ Safety & Security

▪ Numerical stability

▪ Reverse engineering

| 8October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

UNISIM-VP / HIGHLIGHTS & ROADMAP

•Full System Simulators

• Full software stacks

•ISA decoder front-ends for CyberSecurity

• Interfacing internal & external tools

•Numerical Stability Analyzers

• Numerical Stability in embedded systems (train)

•Support for rare processor brands

• High confidence level

« Validation with code introspection of a virtual platform for sandboxing and security

analysis » In C&ESAR 2019 Conference - Virtualization and Cybersecurity, 2019

Hightlights & Major achievements

Scientific

• Embedded/Edge AI Code Analysis ToolSuite

• Enhanced tooling for HW/SW reverse engineering

•Technical

• GPU / TPU / NPU simulation

• Ease addition of Non-expert interface

Roadmap

| 9October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

OUTLINE

UNISIM-VP Quick Overview

Pre-Existing instrumentation capabilities

On-going work & FP instrumentations

| 10October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

• Connecting our concrete simulators to symbolic tools

• Using unmodified original simulator code

• Heavy use of C++ templates to instantiate different simulator instances (recompilation)

• Enables:

• Connection to symbolic and formal tools

• Self-introspection, e.g. for simulation self-tests

ADVANCED AND REPRESENTATIVE UNISIM INSTRUMENTATION

| 11October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

EXTENDING UNISIM-VP FOR GENERIC CODE ANALYSIS

Provides a uniform way to deploy a wide range of code analyzers
▪ Numerical stability (floating point instrumentation)
▪ Code sanitizing (e.g. computation on uninitialized values)
▪ Taint analysis

How ? Re-write all hardware simulators to use flexible data types.

Curiously enough, this is often not that hard (thanks to C++)…

R1 R2 RD

10 5 0

10 5 15

R1 R2 RD

X Y Z

X Y X+Y

UNISIM-VP Instruction Set Description
Encodings – Disassembly – Behavior

add.execute(cpu)

{

U32 operand1 = cpu.GetRegister(r1);

U32 operand2 = cpu.GetRegister(r2);

U32 result = operand1 + operand2;

cpu.SetRegister(result);

}

E
x
:

p
ro

c
e

s
s
o

r
s
im

u
la

to
r Concrete

Executing instruction

on concrete values

Symbolic

Executing instruction

on symbolic values

Connecting our concrete simulators to symbolic tools

| 12October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

SECURITY USE-CASE: THE BINSEC TOOL

BINSEC is a binary code analyzer for security

leveraging formal methods & automatic code verification https://binsec.github.io

Analyzers

(Back-ends)
Decoders

(Front-end) DBAIR

BINSEC

Intermediate representation

Machine

Code

IA32,

RISC-V

Simplifiers

| 13October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

• Why verify instruction set simulator ?

• Some critical systems are tested and validated on simulators

• Formal methods based on semantic accuracy

• Why validate using single instruction tests (unit tests) ?

• Simulator errors are hard to spot on full application runs

• Only way to verify every machine instruction

• Why a self-verifying simulator ?

• Writing unit tests is tedious

• Running unit tests is tedious

INSTRUCTION SET SIMULATOR SELF VERIFICATION

| 14October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

Encodings scan

Decode Simulate

Analyze

T
e
s
ts

 s
e
le

c
ti
o
n

bytes

Instructions

Execute

Compare

Tests generation

Behaviors

functions

JIT

outputs outputs

results

Algorithm

Data

Architecture

Specific

Architecture

Independent

PRINCIPLES OF THE SELF-VERIFYING SIMULATOR

| 15October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

INSTRUCTION DISCOVERY

2 usual techniques:

• Random generation of instruction bytes

• Derive random encodings of documented instructions

Unfortunately infeasible in x86-64

• Up to 15 bytes long instructions

• (much) more than one way to encode an instruction

Forced to use a little of x86-64 knowledge
1

10

100

1000

10000

0E+0 1E+5 2E+5 3E+5 4E+5 5E+5 6E+5 7E+5 8E+5 9E+5

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0E+0 1E+5 2E+5 3E+5 4E+5 5E+5 6E+5 7E+5 8E+5 9E+5

S
e

le
c
te

d
 (

g
ro

w
th

)
S

e
le

c
te

d
 (

c
u

m
u

la
ti
v
e

)

OpCode ModR/M SIB Displacement ImmediatePrefixes

0-4 1-3 ?1 ?1 ?1,2,4 ?1,2,4

Rate of instruction discovery

| 16October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

• Monitoring instruction side effect is complex

• Looking at everything that may have changed is hard

• Looking only at things that changed in simulation is biased

• Some side effects may be hard to compare

• Once again a little x86-64 knowledge is required

• Lookup simulation side-effects

• Lookup common hardware feature: flag values

• Transfer comparison values to memory

• Some side effects may (still) be hard to compare

INSTRUCTION COMPARISON

Simulate Execute

Compare

Tests generation

functions

JIT

outputs outputs

results

| 17October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

CHARACTERIZING NATIVE INSTRUCTION EXECUTION

Native execution of instruction tests raise issues

• Side effect may be unsafe for execution

• Random inputs may generate errors

Side effect difficulty Resolution

Memory access May access memory

randomly

a) Fix target address using input value control

b) Run in an protected environment

Branch May transfer control to

any memory location

Step in debugger

Interrupts and Traps Leave the program

scope

Run in an hypervisor

Hypervisor ops Hard to confine Hardware debug ?

Access HW counters Environment

dependent values

No satisfying solution to our knowledge

| 18October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

A SANDBOX DETECTION BUG IN QEMU

For other simulators:
• Self-testing should work elsewhere
• Generated tests can also be reused

Among our own bugs
• We picked the trickiest
• Checked other simulators…

Incorrect simulation in QEMU
• Incorrect decoding of instruction prefixes
• Incorrect address computation
• Allows simple sandbox detection
• May confuse malware analyzers

qemu-x86_64 segment prefixes error Bug #1847467

$./sample

I'm not in QEMU

$ qemu-x86_64 ./sample

I'm in QEMU

| 19October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

RECENT DISCOVERY OF A NEW FUNCTIONAL BUG

| 20October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

OUTLINE

UNISIM-VP Quick Overview

Pre-Existing instrumentation capabilities

On-going work & FP instrumentations

| 21October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

• Moving AI software to Embedded/Edge

• For efficiency

• For privacy

• For responsiveness

• Specialized Hardware selection

• Data type (FP, integer)

• Precision

• Validation on real hardware

• (re)validate robustness

• Hardware failures (sensors, memory)

• 2-staged work (on-going)

• Full instrument-ready ARMv8/Linux Simulator

• AI numerical analysis deployment

EVALUATION AND VALIDATION OF AI SOFTWARE IN EMBEDDED SYSTEMS

Typical AI Applications
Computing node

Hardware

acceleration

Drone System

| 22October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

EVALUATION AND VALIDATION OF AI SOFTWARE IN EMBEDDED SYSTEMS

• Demonstrating an emulator capable of

• Running full CPS software stacks (e.g. QEMU)

• Performing numerical analysis & code sanitizing (e.g. Verrou – Valgrind)

Common IA Frameworks

Computing node

Cluster #1
PE
#1

PE
#N

Cluster #N
PE
#1

PE
#N

HW Accelerator

Linux ARMv8
Instrumented

Emulator

➔ Software analyses

➔ HW performance predictions

➔ Algorithm robustness

| 23October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

FULL INSTRUMENT-READY ARMV8/LINUX SIMULATOR

Classical Full System Simulator Features: debugging, profiling, coverage

| 24October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

FULL INSTRUMENT-READY ARMV8/LINUX SIMULATOR

Linux

boot

console

Simulator

console

Uninitialized value detector in full Linux environment

| 25October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

= rooster (99.77)

%

Tests realized on a state-of-the-art resnet50 object classifier

Simple Numerical Analysis ➔ Direct impact observation of degraded hardware accuracy

Input image

AI NUMERICAL ANALYSIS

| 26October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

• We like our instruction descriptions to be intuitive while retaining a specification aspect

• Intel

• ARM

PREPARING AN EFFICIENT FP-OPS DESCRIPTION IN UNISIM-VP

| 27October 6th 2021 – INTERFLOP Semi-Annual Meeting – Yves LHUILLIER, Franck VEDRINE

TODO:

• Clearly separate hardware specificities (exceptions, flags)

• Maximize use of legible operators (+, -, *, abs,…)

• (re)Connect and maintain connections to InterFlop APIs

PREPARING AN EFFICIENT FP-OPS DESCRIPTION IN UNISIM-VP

Commissariat à l’énergie atomique et aux énergies alternatives

Institut List | CEA SACLAY NANO-INNOV | BAT. 861 – PC142

91191 Gif-sur-Yvette Cedex - FRANCE

www-list.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019

Thank You!

